Direct inference of haplotypes from sequencing data.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-08-20 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf195
Zhen Zhang, Bencong Zhu, Yongyi Luo, Jiandong Shi, Sheng Lian, Jingyu Hao, Taobo Hu, Toyotaka Ishibashi, Depeng Wang, Shu Wang, Weichuan Yu, Xiaodan Fan
{"title":"Direct inference of haplotypes from sequencing data.","authors":"Zhen Zhang, Bencong Zhu, Yongyi Luo, Jiandong Shi, Sheng Lian, Jingyu Hao, Taobo Hu, Toyotaka Ishibashi, Depeng Wang, Shu Wang, Weichuan Yu, Xiaodan Fan","doi":"10.1093/bioadv/vbaf195","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Haplotypes are crucial for various genetic analyses, but reconstructing haplotypes from sequencing data remains a significant challenge. Current methods for haplotype reconstruction typically rely on a procedure of two separated stages, variant calling and phasing, but phasing overlooks the errors in variant calling. Additionally, the complexity of haplotype reconstruction increases with the number of homologous chromosomes in the sample, a common scenario in polyploid species or cell mixture sequencing.</p><p><strong>Results: </strong>To address the challenges above, we propose a unified probabilistic framework that directly utilizes sequencing reads to estimate haplotypes and sequencing error profiles. Rather than focusing solely on variant loci used by traditional phasing methods, our approach models all loci covered by any sequencing read to enhance the estimation of error profiles in sequencing data, thereby increasing the statistical power of haplotype inference, especially for low-coverage datasets. Evaluations on both simulated and real sequencing data demonstrate the superior performance of our method, particularly in scenarios characterized by high sequencing error rates, low coverage, or polyploidy.</p><p><strong>Availability and implementation: </strong>Related codes and dataset can be found at: https://github.com/new-zbc/DIHap.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf195"},"PeriodicalIF":2.8000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448230/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Haplotypes are crucial for various genetic analyses, but reconstructing haplotypes from sequencing data remains a significant challenge. Current methods for haplotype reconstruction typically rely on a procedure of two separated stages, variant calling and phasing, but phasing overlooks the errors in variant calling. Additionally, the complexity of haplotype reconstruction increases with the number of homologous chromosomes in the sample, a common scenario in polyploid species or cell mixture sequencing.

Results: To address the challenges above, we propose a unified probabilistic framework that directly utilizes sequencing reads to estimate haplotypes and sequencing error profiles. Rather than focusing solely on variant loci used by traditional phasing methods, our approach models all loci covered by any sequencing read to enhance the estimation of error profiles in sequencing data, thereby increasing the statistical power of haplotype inference, especially for low-coverage datasets. Evaluations on both simulated and real sequencing data demonstrate the superior performance of our method, particularly in scenarios characterized by high sequencing error rates, low coverage, or polyploidy.

Availability and implementation: Related codes and dataset can be found at: https://github.com/new-zbc/DIHap.

Abstract Image

Abstract Image

Abstract Image

从测序数据直接推断单倍型。
动机:单倍型是各种遗传分析的关键,但从测序数据重建单倍型仍然是一个重大挑战。目前的单倍型重建方法通常依赖于两个分离的阶段,即变体调用和相位,但相位忽略了变体调用中的错误。此外,单倍型重建的复杂性随着样品中同源染色体数量的增加而增加,这是多倍体物种或细胞混合物测序的常见情况。结果:为了解决上述挑战,我们提出了一个统一的概率框架,直接利用测序读取来估计单倍型和测序错误概况。我们的方法不像传统的分相方法那样只关注变异基因座,而是对任何测序读取所覆盖的所有基因座进行建模,以增强对测序数据错误谱的估计,从而提高单倍型推断的统计能力,特别是对于低覆盖率的数据集。对模拟和真实测序数据的评估表明,我们的方法具有优越的性能,特别是在高测序错误率、低覆盖率或多倍体的情况下。可用性和实现:相关代码和数据集可在https://github.com/new-zbc/DIHap找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信