Protein cleaver: an interactive web interface for in silico prediction and systematic annotation of protein digestion-derived peptides.

IF 3.9 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2025-09-04 eCollection Date: 2025-01-01 DOI:10.3389/fbinf.2025.1576317
Grigorios Koulouras, Yingrong Xu
{"title":"Protein cleaver: an interactive web interface for <i>in silico</i> prediction and systematic annotation of protein digestion-derived peptides.","authors":"Grigorios Koulouras, Yingrong Xu","doi":"10.3389/fbinf.2025.1576317","DOIUrl":null,"url":null,"abstract":"<p><p>Proteolytic digestion is an essential process in mass spectrometry-based proteomics for converting proteins into peptides, hence crucial for protein identification and quantification. In a typical proteomics experiment, digestion reagents are selected without prior evaluation of their optimality for detecting proteins or peptides of interest, partly due to the lack of comprehensive and user-friendly predictive tools. In this work, we introduce Protein Cleaver, a web-based application that systematically assesses regions of proteins that are likely or unlikely to be identified, along with extensive sequence and structure annotation and visualization features. We showcase practical examples of Protein Cleaver's usability in drug discovery and highlight proteins that are typically difficult to detect using the most common proteolytic enzymes. We evaluate trypsin and chymotrypsin for identifying G-protein-coupled receptors and discover that chymotrypsin produces significantly more identifiable peptides than trypsin. We perform a bulk digestion analysis and assess 36 proteolytic enzymes for their ability to detect most of cysteine-containing peptides in the human proteome. We anticipate Protein Cleaver to be a valuable auxiliary tool for proteomics scientists.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1576317"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12445168/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1576317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Proteolytic digestion is an essential process in mass spectrometry-based proteomics for converting proteins into peptides, hence crucial for protein identification and quantification. In a typical proteomics experiment, digestion reagents are selected without prior evaluation of their optimality for detecting proteins or peptides of interest, partly due to the lack of comprehensive and user-friendly predictive tools. In this work, we introduce Protein Cleaver, a web-based application that systematically assesses regions of proteins that are likely or unlikely to be identified, along with extensive sequence and structure annotation and visualization features. We showcase practical examples of Protein Cleaver's usability in drug discovery and highlight proteins that are typically difficult to detect using the most common proteolytic enzymes. We evaluate trypsin and chymotrypsin for identifying G-protein-coupled receptors and discover that chymotrypsin produces significantly more identifiable peptides than trypsin. We perform a bulk digestion analysis and assess 36 proteolytic enzymes for their ability to detect most of cysteine-containing peptides in the human proteome. We anticipate Protein Cleaver to be a valuable auxiliary tool for proteomics scientists.

蛋白质切割器:一个交互式网络界面,用于蛋白质消化衍生肽的计算机预测和系统注释。
蛋白质水解消化是基于质谱的蛋白质组学中将蛋白质转化为多肽的重要过程,因此对蛋白质鉴定和定量至关重要。在典型的蛋白质组学实验中,消化试剂的选择没有事先评估其检测感兴趣的蛋白质或肽的最佳性,部分原因是缺乏全面和用户友好的预测工具。在这项工作中,我们介绍了Protein Cleaver,这是一个基于web的应用程序,可以系统地评估可能或不可能被识别的蛋白质区域,以及广泛的序列和结构注释和可视化功能。我们展示了Protein Cleaver在药物发现中的可用性的实际例子,并强调了使用最常见的蛋白水解酶通常难以检测到的蛋白质。我们评估了胰蛋白酶和凝乳胰蛋白酶在识别g蛋白偶联受体方面的作用,发现凝乳胰蛋白酶比胰蛋白酶产生更多可识别的肽。我们进行了大量消化分析,并评估了36种蛋白水解酶检测人类蛋白质组中大多数含半胱氨酸肽的能力。我们期待Protein Cleaver成为蛋白质组学科学家的一个有价值的辅助工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信