Automated Deep Learning Approach for Post-Operative Neonatal Pain Detection and Prediction through Physiological Signals.

Jacqueline Hausmann, Jiayi Wang, Marcia Kneusel, Stephanie Prescott, Peter R Mouton, Yu Sun, Dmitry Goldgof
{"title":"Automated Deep Learning Approach for Post-Operative Neonatal Pain Detection and Prediction through Physiological Signals.","authors":"Jacqueline Hausmann, Jiayi Wang, Marcia Kneusel, Stephanie Prescott, Peter R Mouton, Yu Sun, Dmitry Goldgof","doi":"10.1109/cbms65348.2025.00164","DOIUrl":null,"url":null,"abstract":"<p><p>It is well-known that severe pain and powerful pain medications cause short- and long-term damage to the developing nervous system of newborns. Caregivers routinely use physiological vital signs [Heart Rate (HR), Respiration Rate (RR), Oxygen Saturation (SR)] to monitor post-surgical pain in the Neonatal Intensive Care Unit (NICU). Here we present a novel approach that combines continuous, non-invasive monitoring of these vital signs and Computer Vision/Deep Learning to make automatic neonate pain detection with an accuracy of 74% AUC, 67.59% mAP. Further, we report for the first time our Early Pain Detection (EPD) approach that explores prediction of the time to onset of post-surgical pain in neonates. Our EPD can alert NICU workers to postoperative neonatal pain about 5 to 10 minutes prior to pain onset. In addition to alleviating the need for intermittent pain assessments by busy NICU nurses via long-term observation, our EPD approach creates a time window prior to pain onset for the use of less harmful pain mitigation strategies. Through effective pain mitigation prior to spinal sensitization, EPD could minimize or eliminate severe post-surgical pain and the consequential need for powerful analgesics in post-surgical neonates.</p>","PeriodicalId":74567,"journal":{"name":"Proceedings. IEEE International Symposium on Computer-Based Medical Systems","volume":"2025 ","pages":"801-806"},"PeriodicalIF":0.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444759/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cbms65348.2025.00164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/4 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is well-known that severe pain and powerful pain medications cause short- and long-term damage to the developing nervous system of newborns. Caregivers routinely use physiological vital signs [Heart Rate (HR), Respiration Rate (RR), Oxygen Saturation (SR)] to monitor post-surgical pain in the Neonatal Intensive Care Unit (NICU). Here we present a novel approach that combines continuous, non-invasive monitoring of these vital signs and Computer Vision/Deep Learning to make automatic neonate pain detection with an accuracy of 74% AUC, 67.59% mAP. Further, we report for the first time our Early Pain Detection (EPD) approach that explores prediction of the time to onset of post-surgical pain in neonates. Our EPD can alert NICU workers to postoperative neonatal pain about 5 to 10 minutes prior to pain onset. In addition to alleviating the need for intermittent pain assessments by busy NICU nurses via long-term observation, our EPD approach creates a time window prior to pain onset for the use of less harmful pain mitigation strategies. Through effective pain mitigation prior to spinal sensitization, EPD could minimize or eliminate severe post-surgical pain and the consequential need for powerful analgesics in post-surgical neonates.

基于生理信号的新生儿术后疼痛检测与预测的自动深度学习方法。
众所周知,剧烈疼痛和强效止痛药会对新生儿发育中的神经系统造成短期和长期的损害。在新生儿重症监护病房(NICU),照例使用生理生命体征[心率(HR)、呼吸频率(RR)、血氧饱和度(SR)]监测术后疼痛。在这里,我们提出了一种新的方法,结合了对这些生命体征的连续、无创监测和计算机视觉/深度学习,使新生儿疼痛自动检测具有74% AUC和67.59% mAP的准确性。此外,我们首次报道了我们的早期疼痛检测(EPD)方法,该方法探索了新生儿术后疼痛发作时间的预测。我们的EPD可以在新生儿疼痛发作前5到10分钟提醒新生儿新生儿术后疼痛。除了通过长期观察减轻繁忙的NICU护士对间歇性疼痛评估的需求外,我们的EPD方法在疼痛发作之前创建了一个时间窗口,用于使用危害较小的疼痛缓解策略。通过脊髓致敏前的有效疼痛缓解,EPD可以减少或消除术后新生儿严重的术后疼痛和对强效镇痛药的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信