bloodAGENT: a versatile tool for blood group typing and genomic variation analysis.

IF 2.8 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Bioinformatics advances Pub Date : 2025-09-02 eCollection Date: 2025-01-01 DOI:10.1093/bioadv/vbaf210
Michael Wittig, Tim A Steiert, Christoph Gassner, Andre Franke
{"title":"bloodAGENT: a versatile tool for blood group typing and genomic variation analysis.","authors":"Michael Wittig, Tim A Steiert, Christoph Gassner, Andre Franke","doi":"10.1093/bioadv/vbaf210","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>Accurate blood group allele determination is essential for both research and clinical applications. While next-generation sequencing and third-generation sequencing technologies provide a wealth of genomic data, secondary analysis pipelines often struggle with detecting variations in paralogous regions and maintaining haplotype integrity. Existing tools for blood group allele determination are frequently proprietary and lack the flexibility needed to address these challenges. To bridge this gap, we developed bloodAGENT, a versatile and open-source tool designed for analyzing genomic variation and resolving blood group alleles.</p><p><strong>Results: </strong>bloodAGENT achieves high concordance in blood group allele determination under typical conditions but reveals a strong dependence on data completeness. Simulations show that dropout rates are the primary determinant of concordance and ambiguities, with noticeable declines at dropout rates as low as 5%. While phasing breaks have a minor overall impact, their importance remains evident in specific scenarios. These results highlight bloodAGENT's robustness and its potential for handling complex genomic analyses.</p><p><strong>Availability and implementation: </strong>https://github.com/ikmb/bloodAGENT.git.</p>","PeriodicalId":72368,"journal":{"name":"Bioinformatics advances","volume":"5 1","pages":"vbaf210"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448795/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioadv/vbaf210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Motivation: Accurate blood group allele determination is essential for both research and clinical applications. While next-generation sequencing and third-generation sequencing technologies provide a wealth of genomic data, secondary analysis pipelines often struggle with detecting variations in paralogous regions and maintaining haplotype integrity. Existing tools for blood group allele determination are frequently proprietary and lack the flexibility needed to address these challenges. To bridge this gap, we developed bloodAGENT, a versatile and open-source tool designed for analyzing genomic variation and resolving blood group alleles.

Results: bloodAGENT achieves high concordance in blood group allele determination under typical conditions but reveals a strong dependence on data completeness. Simulations show that dropout rates are the primary determinant of concordance and ambiguities, with noticeable declines at dropout rates as low as 5%. While phasing breaks have a minor overall impact, their importance remains evident in specific scenarios. These results highlight bloodAGENT's robustness and its potential for handling complex genomic analyses.

Availability and implementation: https://github.com/ikmb/bloodAGENT.git.

血型分型和基因组变异分析的多功能工具。
动机:准确的血型等位基因测定对于研究和临床应用都是至关重要的。虽然下一代测序和第三代测序技术提供了丰富的基因组数据,但二级分析管道通常难以检测相似区域的变异并保持单倍型的完整性。现有的血型等位基因测定工具往往是专有的,缺乏应对这些挑战所需的灵活性。为了弥补这一差距,我们开发了bloodAGENT,这是一个多功能的开源工具,用于分析基因组变异和解决血型等位基因。结果:bloodAGENT在典型条件下对血型等位基因的测定具有较高的一致性,但对数据完整性的依赖性较强。模拟表明,辍学率是一致性和模糊性的主要决定因素,辍学率低至5%时显著下降。虽然分阶段中断的总体影响较小,但它们在特定场景中的重要性仍然很明显。这些结果突出了bloodAGENT的稳健性及其处理复杂基因组分析的潜力。可用性和实现:https://github.com/ikmb/bloodAGENT.git。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信