{"title":"Hidden Population Estimation with Indirect Inference and Auxiliary Information.","authors":"Justin Weltz, Eric Laber, Alexander Volfovsky","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Many populations defined by illegal or stigmatized behavior are difficult to sample using conventional survey methodology. Respondent Driven Sampling (RDS) is a participant referral process frequently employed in this context to collect information. This sampling methodology can be modeled as a stochastic process that explores the graph of a social network, generating a partially observed subgraph between study participants. The methods currently used to impute the missing edges in this subgraph exhibit biased downstream estimation. We leverage auxiliary participant information and concepts from indirect inference to ameliorate these issues and improve estimation of the hidden population size. These advances result in smaller bias and higher precision in the estimation of the study participant arrival rate, the sample subgraph, and the population size. Lastly, we use our method to estimate the number of People Who Inject Drugs (PWID) in the Kohtla-Jarve region of Estonia.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"244 ","pages":"3730-3746"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Many populations defined by illegal or stigmatized behavior are difficult to sample using conventional survey methodology. Respondent Driven Sampling (RDS) is a participant referral process frequently employed in this context to collect information. This sampling methodology can be modeled as a stochastic process that explores the graph of a social network, generating a partially observed subgraph between study participants. The methods currently used to impute the missing edges in this subgraph exhibit biased downstream estimation. We leverage auxiliary participant information and concepts from indirect inference to ameliorate these issues and improve estimation of the hidden population size. These advances result in smaller bias and higher precision in the estimation of the study participant arrival rate, the sample subgraph, and the population size. Lastly, we use our method to estimate the number of People Who Inject Drugs (PWID) in the Kohtla-Jarve region of Estonia.