Hidden Population Estimation with Indirect Inference and Auxiliary Information.

Justin Weltz, Eric Laber, Alexander Volfovsky
{"title":"Hidden Population Estimation with Indirect Inference and Auxiliary Information.","authors":"Justin Weltz, Eric Laber, Alexander Volfovsky","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Many populations defined by illegal or stigmatized behavior are difficult to sample using conventional survey methodology. Respondent Driven Sampling (RDS) is a participant referral process frequently employed in this context to collect information. This sampling methodology can be modeled as a stochastic process that explores the graph of a social network, generating a partially observed subgraph between study participants. The methods currently used to impute the missing edges in this subgraph exhibit biased downstream estimation. We leverage auxiliary participant information and concepts from indirect inference to ameliorate these issues and improve estimation of the hidden population size. These advances result in smaller bias and higher precision in the estimation of the study participant arrival rate, the sample subgraph, and the population size. Lastly, we use our method to estimate the number of People Who Inject Drugs (PWID) in the Kohtla-Jarve region of Estonia.</p>","PeriodicalId":74504,"journal":{"name":"Proceedings of machine learning research","volume":"244 ","pages":"3730-3746"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of machine learning research","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many populations defined by illegal or stigmatized behavior are difficult to sample using conventional survey methodology. Respondent Driven Sampling (RDS) is a participant referral process frequently employed in this context to collect information. This sampling methodology can be modeled as a stochastic process that explores the graph of a social network, generating a partially observed subgraph between study participants. The methods currently used to impute the missing edges in this subgraph exhibit biased downstream estimation. We leverage auxiliary participant information and concepts from indirect inference to ameliorate these issues and improve estimation of the hidden population size. These advances result in smaller bias and higher precision in the estimation of the study participant arrival rate, the sample subgraph, and the population size. Lastly, we use our method to estimate the number of People Who Inject Drugs (PWID) in the Kohtla-Jarve region of Estonia.

基于间接推断和辅助信息的隐藏总体估计。
许多被非法或污名化行为界定的人群很难用传统的调查方法抽样。被调查者驱动抽样(RDS)是在这种情况下经常用于收集信息的参与者推荐过程。这种抽样方法可以建模为探索社会网络图的随机过程,在研究参与者之间生成部分观察到的子图。目前用于估算该子图中缺失边的方法显示出有偏的下游估计。我们利用间接推断的辅助参与者信息和概念来改善这些问题,并改进对隐藏人口规模的估计。这些进步使研究参与者到达率、样本子图和总体规模的估计偏差更小,精度更高。最后,我们用我们的方法估计了爱沙尼亚Kohtla-Jarve地区注射吸毒者(PWID)的人数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信