TCRscape: a single-cell multi-omic TCR profiling toolkit.

IF 3.9 Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Frontiers in bioinformatics Pub Date : 2025-09-05 eCollection Date: 2025-01-01 DOI:10.3389/fbinf.2025.1641491
Roman Perik-Zavodskii, Olga Perik-Zavodskaia, Marina Volynets, Saleh Alrhmoun, Sergey Sennikov
{"title":"TCRscape: a single-cell multi-omic TCR profiling toolkit.","authors":"Roman Perik-Zavodskii, Olga Perik-Zavodskaia, Marina Volynets, Saleh Alrhmoun, Sergey Sennikov","doi":"10.3389/fbinf.2025.1641491","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Single-cell multi-omics has transformed T-cell biology by enabling the simultaneous analysis of T-cell receptor (TCR) sequences, transcriptomes, and surface proteins at the resolution of individual cells. These capabilities are critical for identifying antigen-specific T-cells and accelerating the development of TCR-based immunotherapies.</p><p><strong>Methods: </strong>Here, we introduce TCRscape, an open-source Python 3 tool designed for high-resolution T-cell receptor clonotype discovery and quantification, optimized for BD Rhapsody™ single-cell multi-omics data.</p><p><strong>Results: </strong>TCRscape integrates full-length TCR sequence data with gene expression profiles and surface protein expression to enable multimodal clustering of αβ and γδ T-cell populations. It also outputs Seurat-compatible matrices, facilitating downstream visualization and analysis in standard single-cell analysis environments.</p><p><strong>Discussion: </strong>By bridging clonotype detection with immune cell transcriptome, proteome, and antigen specificity profiling, TCRscape supports rapid identification of dominant T-cell clones and their functional phenotypes, offering a powerful resource for immune monitoring and TCR-engineered therapeutic development. TCRscape can be found at https://github.com/Perik-Zavodskii/TCRscape/.</p>","PeriodicalId":73066,"journal":{"name":"Frontiers in bioinformatics","volume":"5 ","pages":"1641491"},"PeriodicalIF":3.9000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12446293/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fbinf.2025.1641491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Single-cell multi-omics has transformed T-cell biology by enabling the simultaneous analysis of T-cell receptor (TCR) sequences, transcriptomes, and surface proteins at the resolution of individual cells. These capabilities are critical for identifying antigen-specific T-cells and accelerating the development of TCR-based immunotherapies.

Methods: Here, we introduce TCRscape, an open-source Python 3 tool designed for high-resolution T-cell receptor clonotype discovery and quantification, optimized for BD Rhapsody™ single-cell multi-omics data.

Results: TCRscape integrates full-length TCR sequence data with gene expression profiles and surface protein expression to enable multimodal clustering of αβ and γδ T-cell populations. It also outputs Seurat-compatible matrices, facilitating downstream visualization and analysis in standard single-cell analysis environments.

Discussion: By bridging clonotype detection with immune cell transcriptome, proteome, and antigen specificity profiling, TCRscape supports rapid identification of dominant T-cell clones and their functional phenotypes, offering a powerful resource for immune monitoring and TCR-engineered therapeutic development. TCRscape can be found at https://github.com/Perik-Zavodskii/TCRscape/.

Abstract Image

Abstract Image

Abstract Image

TCRscape:单细胞多组TCR分析工具包。
单细胞多组学通过在单个细胞的分辨率上同时分析t细胞受体(TCR)序列、转录组和表面蛋白,改变了t细胞生物学。这些能力对于识别抗原特异性t细胞和加速基于tcr的免疫疗法的发展至关重要。方法:本文介绍了TCRscape,这是一个开源的Python 3工具,用于高分辨率t细胞受体克隆型发现和定量,并针对BD Rhapsody™单细胞多组学数据进行了优化。结果:TCRscape整合了全长TCR序列数据、基因表达谱和表面蛋白表达,实现了αβ和γδ t细胞群体的多模态聚类。它还输出与seurat兼容的矩阵,便于在标准单细胞分析环境中进行下游可视化和分析。讨论:通过将克隆型检测与免疫细胞转录组、蛋白质组和抗原特异性分析连接起来,TCRscape支持快速鉴定优势t细胞克隆及其功能表型,为免疫监测和tcr工程治疗开发提供了强大的资源。TCRscape可以在https://github.com/Perik-Zavodskii/TCRscape/上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信