Normalized weighted cross correlation for multi-channel image registration.

IF 1.4 Q4 OPTICS
Optics continuum Pub Date : 2024-05-15 Epub Date: 2024-04-16 DOI:10.1364/OPTCON.525065
Gastón A Ayubi, Bartlomiej Kowalski, Alfredo Dubra
{"title":"Normalized weighted cross correlation for multi-channel image registration.","authors":"Gastón A Ayubi, Bartlomiej Kowalski, Alfredo Dubra","doi":"10.1364/OPTCON.525065","DOIUrl":null,"url":null,"abstract":"<p><p>The normalized cross-correlation ( <math><mi>N</mi> <mi>C</mi> <mi>C</mi></math> ) is widely used for image registration due to its simple geometrical interpretation and being feature-agnostic. Here, after reviewing <math><mi>N</mi> <mi>C</mi> <mi>C</mi></math> definitions for images with an arbitrary number of dimensions and channels, we propose a generalization in which each pixel value of each channel can be individually weighted using real non-negative numbers. This generalized normalized weighted cross-correlation ( <math><mi>N</mi> <mi>W</mi> <mi>C</mi> <mi>C</mi></math> ) and its zero-mean equivalent ( <math><mi>Z</mi> <mi>N</mi> <mi>W</mi> <mi>C</mi> <mi>C</mi></math> ) can be used, for example, to prioritize pixels based on signal-to-noise ratio. Like a previously defined <math><mi>N</mi> <mi>W</mi> <mi>C</mi> <mi>C</mi></math> with binary weights, the proposed generalizations enable the registration of uniformly, but not necessarily isotropically, sampled images with irregular boundaries and/or sparse sampling. All <math><mi>N</mi> <mi>C</mi> <mi>C</mi></math> definitions discussed here are provided with discrete Fourier transform ( <math><mi>D</mi> <mi>F</mi> <mi>T</mi></math> ) formulations for fast computation. Practical aspects of <math><mi>N</mi> <mi>C</mi> <mi>C</mi></math> computational implementation are briefly discussed, and a convenient function to calculate the overlap of uniformly, but not necessarily isotropically, sampled images with irregular boundaries and/or sparse sampling is introduced, together with its <math><mi>D</mi> <mi>F</mi> <mi>T</mi></math> formulation. Finally, examples illustrate the benefit of the proposed normalized cross-correlation functions.</p>","PeriodicalId":74366,"journal":{"name":"Optics continuum","volume":"3 5","pages":"649-665"},"PeriodicalIF":1.4000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12448653/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics continuum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/OPTCON.525065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/16 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

The normalized cross-correlation ( N C C ) is widely used for image registration due to its simple geometrical interpretation and being feature-agnostic. Here, after reviewing N C C definitions for images with an arbitrary number of dimensions and channels, we propose a generalization in which each pixel value of each channel can be individually weighted using real non-negative numbers. This generalized normalized weighted cross-correlation ( N W C C ) and its zero-mean equivalent ( Z N W C C ) can be used, for example, to prioritize pixels based on signal-to-noise ratio. Like a previously defined N W C C with binary weights, the proposed generalizations enable the registration of uniformly, but not necessarily isotropically, sampled images with irregular boundaries and/or sparse sampling. All N C C definitions discussed here are provided with discrete Fourier transform ( D F T ) formulations for fast computation. Practical aspects of N C C computational implementation are briefly discussed, and a convenient function to calculate the overlap of uniformly, but not necessarily isotropically, sampled images with irregular boundaries and/or sparse sampling is introduced, together with its D F T formulation. Finally, examples illustrate the benefit of the proposed normalized cross-correlation functions.

多通道图像配准的归一化加权互相关。
归一化互相关(ncc - C)因其几何解释简单、特征不确定而被广泛应用于图像配准。这里,在回顾了具有任意数量维度和通道的图像的ncc定义之后,我们提出了一种概化方法,其中每个通道的每个像素值可以使用实数非负数单独加权。例如,这种广义归一化加权互相关(N W C C)及其零均值当量(Z N W C C)可用于根据信噪比对像素进行优先排序。就像之前定义的具有二元权值的nwcc一样,所提出的概化方法可以对具有不规则边界和/或稀疏采样的均匀(但不一定是各向同性)采样图像进行配准。这里讨论的所有nc定义都提供了用于快速计算的离散傅里叶变换(dft)公式。简要讨论了ncc计算实现的实际方面,并介绍了一个方便的函数来计算具有不规则边界和/或稀疏采样的均匀但不一定是各向同性的采样图像的重叠,以及它的D - F - T公式。最后,举例说明了所提出的归一化互相关函数的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信