{"title":"Unveiling the biochemical and haematological profile of blue shark (<i>Prionace glauca</i>) in the Mediterranean after bycatch.","authors":"Lola Toomey, Andrea Bellodi, Massimiliano Bottaro, Antonella Consiglio, Eleonora Fiocchi, Margherita Soncin, Valentina Bertazzo, Maria Cristina Follesa, Amedeo Manfrin, Simone Niedermüller, Giulia Prato, Pierluigi Carbonara","doi":"10.1093/conphys/coaf067","DOIUrl":null,"url":null,"abstract":"<p><p>The blue shark (<i>Prionace glauca</i>) is the most frequently by-caught species in longline fisheries targeting swordfish in the Mediterranean Sea. The IUCN classifies the Mediterranean blue shark population as critically endangered, but no information on haematological or biochemical parameters is available for this population. Based on a multi-year dataset of 63 blue sharks (<i>Prionace glauca</i>) and 18 physiological parameters, this study provides the first detailed insights into the variability of physiological indicators following bycatch in the Mediterranean Sea. We also examined differences across three post-capture condition groups and assessed the potential influence of sex and life stage (juvenile vs. adult) on physiological variability. While no significant differences emerged between sexes or life stages, clear distinctions were observed between condition groups, particularly when compared to moribund or dead individuals (condition group 3). These sharks showed signs of enhanced physiological stress, including reduced glucose, elevated lactate, and altered osmoregulatory function (lower urea and chloride, higher phosphorus). These patterns align with stress responses previously described in other shark species. Overall, the study provides a valuable baseline for future research into the physiology and conservation of Mediterranean blue sharks' population.</p>","PeriodicalId":54331,"journal":{"name":"Conservation Physiology","volume":"13 1","pages":"coaf067"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449297/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conservation Physiology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/conphys/coaf067","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
The blue shark (Prionace glauca) is the most frequently by-caught species in longline fisheries targeting swordfish in the Mediterranean Sea. The IUCN classifies the Mediterranean blue shark population as critically endangered, but no information on haematological or biochemical parameters is available for this population. Based on a multi-year dataset of 63 blue sharks (Prionace glauca) and 18 physiological parameters, this study provides the first detailed insights into the variability of physiological indicators following bycatch in the Mediterranean Sea. We also examined differences across three post-capture condition groups and assessed the potential influence of sex and life stage (juvenile vs. adult) on physiological variability. While no significant differences emerged between sexes or life stages, clear distinctions were observed between condition groups, particularly when compared to moribund or dead individuals (condition group 3). These sharks showed signs of enhanced physiological stress, including reduced glucose, elevated lactate, and altered osmoregulatory function (lower urea and chloride, higher phosphorus). These patterns align with stress responses previously described in other shark species. Overall, the study provides a valuable baseline for future research into the physiology and conservation of Mediterranean blue sharks' population.
期刊介绍:
Conservation Physiology is an online only, fully open access journal published on behalf of the Society for Experimental Biology.
Biodiversity across the globe faces a growing number of threats associated with human activities. Conservation Physiology will publish research on all taxa (microbes, plants and animals) focused on understanding and predicting how organisms, populations, ecosystems and natural resources respond to environmental change and stressors. Physiology is considered in the broadest possible terms to include functional and mechanistic responses at all scales. We also welcome research towards developing and refining strategies to rebuild populations, restore ecosystems, inform conservation policy, and manage living resources. We define conservation physiology broadly and encourage potential authors to contact the editorial team if they have any questions regarding the remit of the journal.