Large language models accurately identify immunosuppression in intensive care unit patients.

IF 4.6 2区 医学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Vijeeth Guggilla, Mengjia Kang, Melissa J Bak, Steven D Tran, Anna Pawlowski, Prasanth Nannapaneni, Luke V Rasmussen, Daniel Schneider, Helen K Donnelly, Ankit Agrawal, David Liebovitz, Alexander V Misharin, G R Scott Budinger, Richard G Wunderink, Theresa L Walunas, Catherine A Gao
{"title":"Large language models accurately identify immunosuppression in intensive care unit patients.","authors":"Vijeeth Guggilla, Mengjia Kang, Melissa J Bak, Steven D Tran, Anna Pawlowski, Prasanth Nannapaneni, Luke V Rasmussen, Daniel Schneider, Helen K Donnelly, Ankit Agrawal, David Liebovitz, Alexander V Misharin, G R Scott Budinger, Richard G Wunderink, Theresa L Walunas, Catherine A Gao","doi":"10.1093/jamia/ocaf141","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Rule-based structured data algorithms and natural language processing (NLP) approaches applied to unstructured clinical notes have limited accuracy and poor generalizability for identifying immunosuppression. Large language models (LLMs) may effectively identify patients with heterogenous types of immunosuppression from unstructured clinical notes. We compared the performance of LLMs applied to unstructured notes for identifying patients with immunosuppressive conditions or immunosuppressive medication use against 2 baselines: (1) structured data algorithms using diagnosis codes and medication orders and (2) NLP approaches applied to unstructured notes.</p><p><strong>Materials and methods: </strong>We used hospital admission notes from a primary cohort of 827 intensive care unit (ICU) patients at Northwestern Memorial Hospital and a validation cohort of 200 ICU patients at Beth Israel Deaconess Medical Center, along with diagnosis codes and medication orders from the primary cohort. We evaluated the performance of structured data algorithms, NLP approaches, and LLMs in identifying 7 immunosuppressive conditions and 6 immunosuppressive medications.</p><p><strong>Results: </strong>In the primary cohort, structured data algorithms achieved peak F1 scores ranging from 0.30 to 0.97 for identifying immunosuppressive conditions and medications. NLP approaches achieved peak F1 scores ranging from 0 to 1. GPT-4o outperformed or matched structured data algorithms and NLP approaches across all conditions and medications, with F1 scores ranging from 0.51 to 1. GPT-4o also performed impressively in our validation cohort (F1 = 1 for 8/13 variables).</p><p><strong>Discussion: </strong>LLMs, particularly GPT-4o, outperformed structured data algorithms and NLP approaches in identifying immunosuppressive conditions and medications with robust external validation.</p><p><strong>Conclusion: </strong>LLMs can be applied for improved cohort identification for research purposes.</p>","PeriodicalId":50016,"journal":{"name":"Journal of the American Medical Informatics Association","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12490808/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Medical Informatics Association","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1093/jamia/ocaf141","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: Rule-based structured data algorithms and natural language processing (NLP) approaches applied to unstructured clinical notes have limited accuracy and poor generalizability for identifying immunosuppression. Large language models (LLMs) may effectively identify patients with heterogenous types of immunosuppression from unstructured clinical notes. We compared the performance of LLMs applied to unstructured notes for identifying patients with immunosuppressive conditions or immunosuppressive medication use against 2 baselines: (1) structured data algorithms using diagnosis codes and medication orders and (2) NLP approaches applied to unstructured notes.

Materials and methods: We used hospital admission notes from a primary cohort of 827 intensive care unit (ICU) patients at Northwestern Memorial Hospital and a validation cohort of 200 ICU patients at Beth Israel Deaconess Medical Center, along with diagnosis codes and medication orders from the primary cohort. We evaluated the performance of structured data algorithms, NLP approaches, and LLMs in identifying 7 immunosuppressive conditions and 6 immunosuppressive medications.

Results: In the primary cohort, structured data algorithms achieved peak F1 scores ranging from 0.30 to 0.97 for identifying immunosuppressive conditions and medications. NLP approaches achieved peak F1 scores ranging from 0 to 1. GPT-4o outperformed or matched structured data algorithms and NLP approaches across all conditions and medications, with F1 scores ranging from 0.51 to 1. GPT-4o also performed impressively in our validation cohort (F1 = 1 for 8/13 variables).

Discussion: LLMs, particularly GPT-4o, outperformed structured data algorithms and NLP approaches in identifying immunosuppressive conditions and medications with robust external validation.

Conclusion: LLMs can be applied for improved cohort identification for research purposes.

大型语言模型准确识别重症监护病房患者的免疫抑制。
目的:基于规则的结构化数据算法和应用于非结构化临床记录的自然语言处理(NLP)方法在识别免疫抑制方面准确性有限,通用性差。大型语言模型(LLMs)可以从非结构化的临床记录中有效地识别异质型免疫抑制患者。我们比较了应用于非结构化笔记的llm的性能,用于识别免疫抑制状况或免疫抑制药物使用的患者,对比了两个基线:(1)使用诊断代码和药物订单的结构化数据算法,以及(2)应用于非结构化笔记的NLP方法。材料和方法:我们使用了来自西北纪念医院827名重症监护病房(ICU)患者的主要队列和来自贝斯以色列女执事医疗中心200名ICU患者的验证队列的住院记录,以及来自主要队列的诊断代码和用药单。我们评估了结构化数据算法、NLP方法和llm在识别7种免疫抑制条件和6种免疫抑制药物方面的性能。结果:在主要队列中,结构化数据算法在识别免疫抑制疾病和药物方面达到了0.30至0.97的F1评分峰值。NLP方法的F1得分峰值在0到1之间。gpt - 40在所有疾病和药物治疗中表现优于或匹配结构化数据算法和NLP方法,F1得分范围为0.51至1。gpt - 40在我们的验证队列中也表现令人印象深刻(8/13个变量F1 = 1)。讨论:llm,特别是gpt - 40,在识别免疫抑制条件和药物方面优于结构化数据算法和NLP方法,并具有强大的外部验证。结论:llm可用于改进队列识别,用于研究目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of the American Medical Informatics Association
Journal of the American Medical Informatics Association 医学-计算机:跨学科应用
CiteScore
14.50
自引率
7.80%
发文量
230
审稿时长
3-8 weeks
期刊介绍: JAMIA is AMIA''s premier peer-reviewed journal for biomedical and health informatics. Covering the full spectrum of activities in the field, JAMIA includes informatics articles in the areas of clinical care, clinical research, translational science, implementation science, imaging, education, consumer health, public health, and policy. JAMIA''s articles describe innovative informatics research and systems that help to advance biomedical science and to promote health. Case reports, perspectives and reviews also help readers stay connected with the most important informatics developments in implementation, policy and education.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信