Metabolic Reprogramming Through Polyphenol Networks: A Systems Approach to Metabolic Inflammation and Insulin Resistance.

IF 4.4 Q1 Medicine
Shakila Jahan Shimu, Jawad Ul Karim Mahir, Fardin Al Fahad Shakib, Arafath Amin Ridoy, Ratin Al Samir, Nadia Jahan, Md Fahim Hasan, Sadman Sazzad, Shamima Akter, Mohammad Sarif Mohiuddin, Md Jalal Ahmed Shawon, Mohammad Hossain Shariare, Mohammad Mohabbulla Mohib, Mohammad Borhan Uddin
{"title":"Metabolic Reprogramming Through Polyphenol Networks: A Systems Approach to Metabolic Inflammation and Insulin Resistance.","authors":"Shakila Jahan Shimu, Jawad Ul Karim Mahir, Fardin Al Fahad Shakib, Arafath Amin Ridoy, Ratin Al Samir, Nadia Jahan, Md Fahim Hasan, Sadman Sazzad, Shamima Akter, Mohammad Sarif Mohiuddin, Md Jalal Ahmed Shawon, Mohammad Hossain Shariare, Mohammad Mohabbulla Mohib, Mohammad Borhan Uddin","doi":"10.3390/medsci13030180","DOIUrl":null,"url":null,"abstract":"<p><p>Obesity-induced insulin resistance and type 2 diabetes mellitus (T2DM) represent complex systemic disorders marked by chronic inflammation, oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. These pathophysiological processes disrupt insulin signaling and β-cell function, leading to impaired glucose homeostasis across multiple organs. Conventional therapies often target isolated pathways, overlooking the intricate molecular crosstalk and organelle-level disturbances driving disease progression. Citrus-derived polyphenols-including hesperidin, naringenin, nobiletin, and tangeretin-have emerged as promising agents capable of orchestrating a multi-targeted \"metabolic reprogramming.\" These compounds modulate key signaling pathways, including AMPK, PI3K/Akt, NF-κB, and Nrf2, thereby enhancing insulin sensitivity, reducing pro-inflammatory cytokine expression, and restoring redox balance. Furthermore, they improve mitochondrial biogenesis, stabilize membrane potential, and alleviate ER stress by modulating the unfolded protein response (UPR), thus supporting cellular energy homeostasis and protein folding capacity. Evidence from preclinical studies and select clinical trials suggests that citrus polyphenols can significantly improve glycemic control, reduce oxidative and inflammatory markers, and preserve β-cell function. Their pleiotropic actions across molecular and organ-level targets position them as integrative metabolic modulators. This review presents a systems-level synthesis of how citrus polyphenols rewire metabolic signaling networks and organelle resilience, offering a holistic therapeutic strategy to mitigate the root causes of obesity-induced insulin resistance.</p>","PeriodicalId":74152,"journal":{"name":"Medical sciences (Basel, Switzerland)","volume":"13 3","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452514/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical sciences (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/medsci13030180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Obesity-induced insulin resistance and type 2 diabetes mellitus (T2DM) represent complex systemic disorders marked by chronic inflammation, oxidative stress, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. These pathophysiological processes disrupt insulin signaling and β-cell function, leading to impaired glucose homeostasis across multiple organs. Conventional therapies often target isolated pathways, overlooking the intricate molecular crosstalk and organelle-level disturbances driving disease progression. Citrus-derived polyphenols-including hesperidin, naringenin, nobiletin, and tangeretin-have emerged as promising agents capable of orchestrating a multi-targeted "metabolic reprogramming." These compounds modulate key signaling pathways, including AMPK, PI3K/Akt, NF-κB, and Nrf2, thereby enhancing insulin sensitivity, reducing pro-inflammatory cytokine expression, and restoring redox balance. Furthermore, they improve mitochondrial biogenesis, stabilize membrane potential, and alleviate ER stress by modulating the unfolded protein response (UPR), thus supporting cellular energy homeostasis and protein folding capacity. Evidence from preclinical studies and select clinical trials suggests that citrus polyphenols can significantly improve glycemic control, reduce oxidative and inflammatory markers, and preserve β-cell function. Their pleiotropic actions across molecular and organ-level targets position them as integrative metabolic modulators. This review presents a systems-level synthesis of how citrus polyphenols rewire metabolic signaling networks and organelle resilience, offering a holistic therapeutic strategy to mitigate the root causes of obesity-induced insulin resistance.

代谢重编程通过多酚网络:代谢炎症和胰岛素抵抗的系统方法。
肥胖引起的胰岛素抵抗和2型糖尿病(T2DM)是一种复杂的全身性疾病,以慢性炎症、氧化应激、线粒体功能障碍和内质网应激为特征。这些病理生理过程破坏胰岛素信号和β细胞功能,导致多个器官的葡萄糖稳态受损。传统疗法通常针对孤立的途径,忽略了复杂的分子串扰和驱动疾病进展的细胞器水平紊乱。柑橘衍生的多酚——包括橙皮苷、柚皮苷、褐皮苷和橙皮苷——已经成为一种有前途的药物,能够协调多目标的“代谢重编程”。这些化合物调节关键信号通路,包括AMPK、PI3K/Akt、NF-κB和Nrf2,从而提高胰岛素敏感性,降低促炎细胞因子表达,恢复氧化还原平衡。此外,它们通过调节未折叠蛋白反应(UPR)改善线粒体生物发生,稳定膜电位,减轻内质网应激,从而支持细胞能量稳态和蛋白质折叠能力。来自临床前研究和部分临床试验的证据表明,柑橘多酚可以显著改善血糖控制,降低氧化和炎症标志物,并保持β细胞功能。它们在分子和器官水平靶标上的多效性作用使它们成为综合代谢调节剂。本文综述了柑橘多酚如何重新连接代谢信号网络和细胞器恢复力的系统水平合成,为减轻肥胖诱导的胰岛素抵抗的根本原因提供了整体治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.00
自引率
0.00%
发文量
0
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信