Monochromatic Infinite Sets in Minkowski Planes.

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Discrete & Computational Geometry Pub Date : 2025-01-01 Epub Date: 2024-11-12 DOI:10.1007/s00454-024-00702-5
Nóra Frankl, Panna Gehér, Arsenii Sagdeev, Géza Tóth
{"title":"Monochromatic Infinite Sets in Minkowski Planes.","authors":"Nóra Frankl, Panna Gehér, Arsenii Sagdeev, Géza Tóth","doi":"10.1007/s00454-024-00702-5","DOIUrl":null,"url":null,"abstract":"<p><p>We prove that for any <math><msub><mi>ℓ</mi> <mi>p</mi></msub> </math> -norm in the plane with <math><mrow><mn>1</mn> <mo><</mo> <mi>p</mi> <mo><</mo> <mi>∞</mi></mrow> </math> and for every infinite <math><mrow><mi>M</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </mrow> </math> , there exists a two-colouring of the plane such that no isometric copy of <math><mi>M</mi></math> is monochromatic. On the contrary, we show that for every polygonal norm (that is, the unit ball is a polygon) in the plane, there exists an infinite <math><mrow><mi>M</mi> <mo>⊂</mo> <msup><mrow><mi>R</mi></mrow> <mn>2</mn></msup> </mrow> </math> such that for every two-colouring of the plane there exists a monochromatic isometric copy of <math><mi>M</mi></math> .</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"74 2","pages":"569-583"},"PeriodicalIF":0.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449424/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00702-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/12 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove that for any p -norm in the plane with 1 < p < and for every infinite M R 2 , there exists a two-colouring of the plane such that no isometric copy of M is monochromatic. On the contrary, we show that for every polygonal norm (that is, the unit ball is a polygon) in the plane, there exists an infinite M R 2 such that for every two-colouring of the plane there exists a monochromatic isometric copy of M .

Abstract Image

Abstract Image

Abstract Image

闵可夫斯基平面上的单色无限集。
我们证明,对于平面上的任意p模,在1 p∞上,对于每一个无限M∧R 2,存在平面的双着色,使得M的等距副本不存在单色。相反,我们证明,对于平面上的每一个多边形范数(即,单位球是一个多边形),存在一个无限的M∧R 2,使得对于平面的每一个两色都存在M的单色等距副本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信