COLDLNA: Enhancing long-range node features extraction to improve robust generalization ability of drug-target binding affinity prediction in cold-start scenarios.
IF 0.7 4区 生物学Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
{"title":"COLDLNA: Enhancing long-range node features extraction to improve robust generalization ability of drug-target binding affinity prediction in cold-start scenarios.","authors":"Ting Xu, Shaohua Jiang, Weibin Ding, Peng Wang","doi":"10.1142/S0219720025500131","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advances in deep learning have driven significant progress in drug-target affinity (DTA) prediction. However, many models do not effectively utilize drug molecular graphs or capture long-range protein features, limiting their predictive accuracy. To address these limitations, a novel COLDLNA model is designed for robust DTA prediction. The model employs the Long-range Node Attention Module to refine drug structure representations, while leveraging the Convolutional Attention Module to elucidate critical binding sites by extracting pivotal long-range information from protein amino acid sequences. Compared with the baseline model GraphDTA, COLDLNA reduced the MSE by 12.2% and 11.5% on the Davis and KIBA datasets, respectively. Additionally, its strong generalization ability was further validated on the Human dataset, C. elegans dataset, and in cold-start scenarios.</p>","PeriodicalId":48910,"journal":{"name":"Journal of Bioinformatics and Computational Biology","volume":" ","pages":"2550013"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bioinformatics and Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1142/S0219720025500131","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in deep learning have driven significant progress in drug-target affinity (DTA) prediction. However, many models do not effectively utilize drug molecular graphs or capture long-range protein features, limiting their predictive accuracy. To address these limitations, a novel COLDLNA model is designed for robust DTA prediction. The model employs the Long-range Node Attention Module to refine drug structure representations, while leveraging the Convolutional Attention Module to elucidate critical binding sites by extracting pivotal long-range information from protein amino acid sequences. Compared with the baseline model GraphDTA, COLDLNA reduced the MSE by 12.2% and 11.5% on the Davis and KIBA datasets, respectively. Additionally, its strong generalization ability was further validated on the Human dataset, C. elegans dataset, and in cold-start scenarios.
期刊介绍:
The Journal of Bioinformatics and Computational Biology aims to publish high quality, original research articles, expository tutorial papers and review papers as well as short, critical comments on technical issues associated with the analysis of cellular information.
The research papers will be technical presentations of new assertions, discoveries and tools, intended for a narrower specialist community. The tutorials, reviews and critical commentary will be targeted at a broader readership of biologists who are interested in using computers but are not knowledgeable about scientific computing, and equally, computer scientists who have an interest in biology but are not familiar with current thrusts nor the language of biology. Such carefully chosen tutorials and articles should greatly accelerate the rate of entry of these new creative scientists into the field.