Sivan Pearl Mizrahi, Hyunseok Lee, Akshit Goyal, Erik Owen, Jeff Gore
{"title":"Structured interactions explain the absence of keystone species in synthetic microcosms.","authors":"Sivan Pearl Mizrahi, Hyunseok Lee, Akshit Goyal, Erik Owen, Jeff Gore","doi":"10.1093/ismejo/wraf211","DOIUrl":null,"url":null,"abstract":"<p><p>In complex ecosystems, the loss of certain species can trigger a cascade of secondary extinctions and invasions. However, our understanding of the prevalence of these critical \"keystone\" species and the factors influencing their emergence remains limited. To address these questions, we experimentally assembled microcosms from 16 marine bacterial species and found that multiple extinctions and invasions were exceedingly rare upon removal of a species from the initial inoculation. This was true across eight different environments with either simple carbon sources (e.g. glucose) and more complex ones (e.g. glycogen). By employing a generalized Lotka-Volterra model, we could reproduce these results when interspecies interactions followed a hierarchical pattern, wherein species impacted strongly by one species were also more likely to experience strong impacts from others. Such a pattern naturally emerges due to observed variation in carrying capacities and growth rates. Furthermore, using both statistical inference and spent media experiments, we inferred interspecies interaction strengths and found them consistent with structured interactions. Our results suggest that the natural emergence of structured interactions may provide community resilience to extinctions.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12510465/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf211","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In complex ecosystems, the loss of certain species can trigger a cascade of secondary extinctions and invasions. However, our understanding of the prevalence of these critical "keystone" species and the factors influencing their emergence remains limited. To address these questions, we experimentally assembled microcosms from 16 marine bacterial species and found that multiple extinctions and invasions were exceedingly rare upon removal of a species from the initial inoculation. This was true across eight different environments with either simple carbon sources (e.g. glucose) and more complex ones (e.g. glycogen). By employing a generalized Lotka-Volterra model, we could reproduce these results when interspecies interactions followed a hierarchical pattern, wherein species impacted strongly by one species were also more likely to experience strong impacts from others. Such a pattern naturally emerges due to observed variation in carrying capacities and growth rates. Furthermore, using both statistical inference and spent media experiments, we inferred interspecies interaction strengths and found them consistent with structured interactions. Our results suggest that the natural emergence of structured interactions may provide community resilience to extinctions.
期刊介绍:
The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.