Enhancing Prostate Cancer Diagnosis: The Combined Value of PHI and mpMRI.

IF 2.5 3区 医学 Q3 ENDOCRINOLOGY & METABOLISM
Prostate Pub Date : 2025-09-22 DOI:10.1002/pros.70055
Y M Yáñez-Castillo, M T Melgarejo-Segura, M A Arrabal-Polo, A Jiménez-Pacheco, J V García-Larios, T De Haro Muñoz, P Lardelli-Claret, J L Martín-Rodríguez, M Arrabal-Martín
{"title":"Enhancing Prostate Cancer Diagnosis: The Combined Value of PHI and mpMRI.","authors":"Y M Yáñez-Castillo, M T Melgarejo-Segura, M A Arrabal-Polo, A Jiménez-Pacheco, J V García-Larios, T De Haro Muñoz, P Lardelli-Claret, J L Martín-Rodríguez, M Arrabal-Martín","doi":"10.1002/pros.70055","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prostate cancer (PCa) diagnosis is often hindered by the need to detect clinically significant disease (csPCa) while minimizing unnecessary biopsies. The Prostate Health Index (PHI) and multiparametric magnetic resonance imaging (mpMRI) are promising tools to address these challenges.</p><p><strong>Objective: </strong>To develop and internally validate a predictive model for PCa and csPCa by combining PHI and mpMRI in a high-risk population.</p><p><strong>Methods: </strong>This retrospective study included 179 patients who underwent prostate biopsy between 2019 and 2023. Inclusion criteria comprised elevated PSA (> 3 ng/mL), suspicious digital rectal examination and/or family history, PHI values, and pre-biopsy mpMRI. Logistic regression models were developed, and model performance was assessed using C-statistics, calibration plots, and decision curve analysis (DCA).</p><p><strong>Results: </strong>PCa was diagnosed in 40.2% of patients, and csPCa in 34.7% of them. A multivariate model including PHI, prostate volume, and mpMRI achieved an AUC of 0.81 for PCa. For csPCa, the best model combined PHI and prostate volume (AUC 0.76). In the PI-RADS 3 subgroup, PHI showed high discriminatory performance (AUC 0.81), surpassing PSA density (PSA-D). The DCA showed a superior net benefit of the multivariable models compared to single-parameter strategies.</p><p><strong>Conclusion: </strong>Integrating PHI and mpMRI improves PCa diagnostic accuracy and clinical decision-making, especially in ambiguous cases such as PI-RADS 3 lesions, and reduces unnecessary biopsies in clinical practice.</p>","PeriodicalId":54544,"journal":{"name":"Prostate","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostate","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/pros.70055","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Prostate cancer (PCa) diagnosis is often hindered by the need to detect clinically significant disease (csPCa) while minimizing unnecessary biopsies. The Prostate Health Index (PHI) and multiparametric magnetic resonance imaging (mpMRI) are promising tools to address these challenges.

Objective: To develop and internally validate a predictive model for PCa and csPCa by combining PHI and mpMRI in a high-risk population.

Methods: This retrospective study included 179 patients who underwent prostate biopsy between 2019 and 2023. Inclusion criteria comprised elevated PSA (> 3 ng/mL), suspicious digital rectal examination and/or family history, PHI values, and pre-biopsy mpMRI. Logistic regression models were developed, and model performance was assessed using C-statistics, calibration plots, and decision curve analysis (DCA).

Results: PCa was diagnosed in 40.2% of patients, and csPCa in 34.7% of them. A multivariate model including PHI, prostate volume, and mpMRI achieved an AUC of 0.81 for PCa. For csPCa, the best model combined PHI and prostate volume (AUC 0.76). In the PI-RADS 3 subgroup, PHI showed high discriminatory performance (AUC 0.81), surpassing PSA density (PSA-D). The DCA showed a superior net benefit of the multivariable models compared to single-parameter strategies.

Conclusion: Integrating PHI and mpMRI improves PCa diagnostic accuracy and clinical decision-making, especially in ambiguous cases such as PI-RADS 3 lesions, and reduces unnecessary biopsies in clinical practice.

提高前列腺癌的诊断:PHI和mpMRI的联合价值。
背景:前列腺癌(PCa)的诊断常常受到需要检测临床显著疾病(csPCa)的阻碍,同时尽量减少不必要的活检。前列腺健康指数(PHI)和多参数磁共振成像(mpMRI)是解决这些挑战的有希望的工具。目的:通过结合PHI和mpMRI在高危人群中建立PCa和csPCa的预测模型并进行内部验证。方法:本回顾性研究纳入了2019年至2023年间接受前列腺活检的179例患者。纳入标准包括PSA升高(>.3 ng/mL)、可疑直肠指检和/或家族史、PHI值和活检前mpMRI。建立Logistic回归模型,并使用c统计量、校准图和决策曲线分析(DCA)评估模型的性能。结果:前列腺癌诊断率为40.2%,csPCa诊断率为34.7%。包括PHI、前列腺体积和mpMRI在内的多变量模型得出PCa的AUC为0.81。对于csPCa,最佳模型为PHI与前列腺体积联合模型(AUC为0.76)。在PI-RADS 3亚组中,PHI表现出高区分性能(AUC 0.81),超过PSA密度(PSA- d)。与单参数策略相比,DCA显示了多变量模型的优越净效益。结论:整合PHI和mpMRI可提高前列腺癌诊断的准确性和临床决策,特别是在PI-RADS 3病变等模糊病例中,减少临床不必要的活检。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Prostate
Prostate 医学-泌尿学与肾脏学
CiteScore
5.10
自引率
3.60%
发文量
180
审稿时长
1.5 months
期刊介绍: The Prostate is a peer-reviewed journal dedicated to original studies of this organ and the male accessory glands. It serves as an international medium for these studies, presenting comprehensive coverage of clinical, anatomic, embryologic, physiologic, endocrinologic, and biochemical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信