{"title":"Integrating large language models for intuitive robot navigation.","authors":"Ziheng Xue, Arturs Elksnis, Ning Wang","doi":"10.3389/frobt.2025.1627937","DOIUrl":null,"url":null,"abstract":"<p><p>Home assistance robots face challenges in natural language interaction, object detection, and navigation, mainly when operating in resource-constrained home environments, which limits their practical deployment. In this study, we propose an AI agent framework based on Large Language Models (LLMs), which includes EnvNet, RoutePlanner, and AIBrain, to explore solutions for these issues. Utilizing quantized LLMs allows the system to operate on resource-limited devices while maintaining robust interaction capabilities. Our proposed method shows promising results in improving natural language understanding and navigation accuracy in home environments, also providing a valuable exploration for deploying home assistance robots.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1627937"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1627937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Home assistance robots face challenges in natural language interaction, object detection, and navigation, mainly when operating in resource-constrained home environments, which limits their practical deployment. In this study, we propose an AI agent framework based on Large Language Models (LLMs), which includes EnvNet, RoutePlanner, and AIBrain, to explore solutions for these issues. Utilizing quantized LLMs allows the system to operate on resource-limited devices while maintaining robust interaction capabilities. Our proposed method shows promising results in improving natural language understanding and navigation accuracy in home environments, also providing a valuable exploration for deploying home assistance robots.
期刊介绍:
Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.