Integrating large language models for intuitive robot navigation.

IF 3 Q2 ROBOTICS
Frontiers in Robotics and AI Pub Date : 2025-09-04 eCollection Date: 2025-01-01 DOI:10.3389/frobt.2025.1627937
Ziheng Xue, Arturs Elksnis, Ning Wang
{"title":"Integrating large language models for intuitive robot navigation.","authors":"Ziheng Xue, Arturs Elksnis, Ning Wang","doi":"10.3389/frobt.2025.1627937","DOIUrl":null,"url":null,"abstract":"<p><p>Home assistance robots face challenges in natural language interaction, object detection, and navigation, mainly when operating in resource-constrained home environments, which limits their practical deployment. In this study, we propose an AI agent framework based on Large Language Models (LLMs), which includes EnvNet, RoutePlanner, and AIBrain, to explore solutions for these issues. Utilizing quantized LLMs allows the system to operate on resource-limited devices while maintaining robust interaction capabilities. Our proposed method shows promising results in improving natural language understanding and navigation accuracy in home environments, also providing a valuable exploration for deploying home assistance robots.</p>","PeriodicalId":47597,"journal":{"name":"Frontiers in Robotics and AI","volume":"12 ","pages":"1627937"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12444764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Robotics and AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frobt.2025.1627937","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Home assistance robots face challenges in natural language interaction, object detection, and navigation, mainly when operating in resource-constrained home environments, which limits their practical deployment. In this study, we propose an AI agent framework based on Large Language Models (LLMs), which includes EnvNet, RoutePlanner, and AIBrain, to explore solutions for these issues. Utilizing quantized LLMs allows the system to operate on resource-limited devices while maintaining robust interaction capabilities. Our proposed method shows promising results in improving natural language understanding and navigation accuracy in home environments, also providing a valuable exploration for deploying home assistance robots.

集成大型语言模型,实现直观的机器人导航。
家庭辅助机器人在自然语言交互、目标检测和导航方面面临挑战,主要是在资源受限的家庭环境中运行时,这限制了它们的实际部署。在这项研究中,我们提出了一个基于大型语言模型(llm)的人工智能代理框架,包括EnvNet, RoutePlanner和AIBrain,以探索这些问题的解决方案。利用量化llm允许系统在资源有限的设备上运行,同时保持强大的交互能力。我们提出的方法在提高家庭环境中的自然语言理解和导航精度方面显示出有希望的结果,也为部署家庭辅助机器人提供了有价值的探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.50
自引率
5.90%
发文量
355
审稿时长
14 weeks
期刊介绍: Frontiers in Robotics and AI publishes rigorously peer-reviewed research covering all theory and applications of robotics, technology, and artificial intelligence, from biomedical to space robotics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信