Deciphering the Heterogeneity of Pancreatic Cancer: DNA Methylation-Based Cell Type Deconvolution Unveils Distinct Subgroups and Immune Landscapes.

IF 3.5 Q3 GENETICS & HEREDITY
Barbara Mitsuyasu Barbosa, Alexandre Todorovic Fabro, Roberto da Silva Gomes, Claudia Aparecida Rainho
{"title":"Deciphering the Heterogeneity of Pancreatic Cancer: DNA Methylation-Based Cell Type Deconvolution Unveils Distinct Subgroups and Immune Landscapes.","authors":"Barbara Mitsuyasu Barbosa, Alexandre Todorovic Fabro, Roberto da Silva Gomes, Claudia Aparecida Rainho","doi":"10.3390/epigenomes9030034","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background:</b> Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous malignancy, characterized by low tumor cellularity, a dense stromal response, and intricate cellular and molecular interactions within the tumor microenvironment (TME). Although bulk omics technologies have enhanced our understanding of the molecular landscape of PDAC, the specific contributions of non-malignant immune and stromal components to tumor progression and therapeutic response remain poorly understood. <b>Methods:</b> We explored genome-wide DNA methylation and transcriptomic data from the Cancer Genome Atlas Pancreatic Adenocarcinoma cohort (TCGA-PAAD) to profile the immune composition of the TME and uncover gene co-expression networks. Bioinformatic analyses included DNA methylation profiling followed by hierarchical deconvolution, epigenetic age estimation, and a weighted gene co-expression network analysis (WGCNA). <b>Results:</b> The unsupervised clustering of methylation profiles identified two major tumor groups, with Group 2 (n = 98) exhibiting higher tumor purity and a greater frequency of <i>KRAS</i> mutations compared to Group 1 (n = 87) (<i>p</i> < 0.0001). The hierarchical deconvolution of DNA methylation data revealed three distinct TME subtypes, termed hypo-inflamed (immune-deserted), myeloid-enriched, and lymphoid-enriched (notably T-cell predominant). These immune clusters were further supported by co-expression modules identified via WGCNA, which were enriched in immune regulatory and signaling pathways. <b>Conclusions:</b> This integrative epigenomic-transcriptomic analysis offers a robust framework for stratifying PDAC patients based on the tumor immune microenvironment (TIME), providing valuable insights for biomarker discovery and the development of precision immunotherapies.</p>","PeriodicalId":55768,"journal":{"name":"Epigenomes","volume":"9 3","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/epigenomes9030034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly heterogeneous malignancy, characterized by low tumor cellularity, a dense stromal response, and intricate cellular and molecular interactions within the tumor microenvironment (TME). Although bulk omics technologies have enhanced our understanding of the molecular landscape of PDAC, the specific contributions of non-malignant immune and stromal components to tumor progression and therapeutic response remain poorly understood. Methods: We explored genome-wide DNA methylation and transcriptomic data from the Cancer Genome Atlas Pancreatic Adenocarcinoma cohort (TCGA-PAAD) to profile the immune composition of the TME and uncover gene co-expression networks. Bioinformatic analyses included DNA methylation profiling followed by hierarchical deconvolution, epigenetic age estimation, and a weighted gene co-expression network analysis (WGCNA). Results: The unsupervised clustering of methylation profiles identified two major tumor groups, with Group 2 (n = 98) exhibiting higher tumor purity and a greater frequency of KRAS mutations compared to Group 1 (n = 87) (p < 0.0001). The hierarchical deconvolution of DNA methylation data revealed three distinct TME subtypes, termed hypo-inflamed (immune-deserted), myeloid-enriched, and lymphoid-enriched (notably T-cell predominant). These immune clusters were further supported by co-expression modules identified via WGCNA, which were enriched in immune regulatory and signaling pathways. Conclusions: This integrative epigenomic-transcriptomic analysis offers a robust framework for stratifying PDAC patients based on the tumor immune microenvironment (TIME), providing valuable insights for biomarker discovery and the development of precision immunotherapies.

解读胰腺癌的异质性:基于DNA甲基化的细胞类型反卷积揭示了不同的亚群和免疫景观。
背景:胰腺导管腺癌(Pancreatic ductal adencarcinoma, PDAC)是一种高度异质性的恶性肿瘤,其特点是肿瘤细胞密度低,基质反应致密,肿瘤微环境(tumor microenvironment, TME)内细胞和分子相互作用复杂。尽管大量组学技术增强了我们对PDAC分子结构的理解,但非恶性免疫和基质成分对肿瘤进展和治疗反应的具体贡献仍然知之甚少。方法:我们探索了来自癌症基因组图谱胰腺腺癌队列(TCGA-PAAD)的全基因组DNA甲基化和转录组学数据,以分析TME的免疫组成并揭示基因共表达网络。生物信息学分析包括DNA甲基化分析,随后分层反褶积,表观遗传年龄估计和加权基因共表达网络分析(WGCNA)。结果:甲基化谱的无监督聚类鉴定出两个主要的肿瘤组,与1组(n = 87)相比,2组(n = 98)表现出更高的肿瘤纯度和更高的KRAS突变频率(p < 0.0001)。DNA甲基化数据的分层反褶积揭示了三种不同的TME亚型,称为低炎症(免疫缺失),髓细胞富集和淋巴细胞富集(特别是t细胞为主)。这些免疫簇进一步得到了通过WGCNA鉴定的共表达模块的支持,这些共表达模块丰富了免疫调节和信号通路。结论:这种综合表观基因组-转录组学分析为基于肿瘤免疫微环境(TIME)对PDAC患者进行分层提供了一个强大的框架,为生物标志物的发现和精确免疫疗法的开发提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Epigenomes
Epigenomes GENETICS & HEREDITY-
CiteScore
3.80
自引率
0.00%
发文量
38
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信