{"title":"The Impact of Artificial Intelligence on Cancer Diagnosis and Treatment: A Review.","authors":"Niki Najar Najafi, Helia Hajihassani, Maryam Azimzadeh Irani","doi":"10.1177/11769351251371273","DOIUrl":null,"url":null,"abstract":"<p><p>The complexity of cancer has long challenged the medical community, driving the need for improved early detection and treatment. Artificial intelligence (AI) has profoundly impacted oncology research in recent decades, resulting in innovative diagnostic and therapeutic approaches. This review synthesizes the critical applications of AI in oncology, focusing on 4 key areas: medical imaging, digital pathology, robotic surgery, and drug discovery. We highlight the role of AI in cancer diagnosis and treatment by reviewing key studies and machine learning methods, and we address the field's current technical and ethical challenges. AI models have significantly enhanced the accuracy of medical imaging by efficiently detecting lesions and disease sites, leading to earlier and more precise diagnoses. In digital pathology, AI tools aid in risk prediction and facilitate the examination of extensive tissue sample sets for patterns and markers, simplifying the pathologists' tasks. AI-powered robotic surgery provides different levels of automation, leading to precise and minimally invasive procedures that not only improve surgical outcomes but also lower readmission rates, hospital stays, and infection risks. Moreover, AI expedites the process of discovering cancer therapies by identifying potential lead compounds, predicting drug reactions, and repurposing current medications. In the past decade, several AI-developed drugs have successfully entered clinical trials. These significant advancements underscore the expanding role of AI in shaping the future of cancer diagnosis and treatment. Although standardization, transparency, and equitable implementation must be addressed, AI brings hope for more personalized and effective therapies.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":"24 ","pages":"11769351251371273"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12449654/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351251371273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The complexity of cancer has long challenged the medical community, driving the need for improved early detection and treatment. Artificial intelligence (AI) has profoundly impacted oncology research in recent decades, resulting in innovative diagnostic and therapeutic approaches. This review synthesizes the critical applications of AI in oncology, focusing on 4 key areas: medical imaging, digital pathology, robotic surgery, and drug discovery. We highlight the role of AI in cancer diagnosis and treatment by reviewing key studies and machine learning methods, and we address the field's current technical and ethical challenges. AI models have significantly enhanced the accuracy of medical imaging by efficiently detecting lesions and disease sites, leading to earlier and more precise diagnoses. In digital pathology, AI tools aid in risk prediction and facilitate the examination of extensive tissue sample sets for patterns and markers, simplifying the pathologists' tasks. AI-powered robotic surgery provides different levels of automation, leading to precise and minimally invasive procedures that not only improve surgical outcomes but also lower readmission rates, hospital stays, and infection risks. Moreover, AI expedites the process of discovering cancer therapies by identifying potential lead compounds, predicting drug reactions, and repurposing current medications. In the past decade, several AI-developed drugs have successfully entered clinical trials. These significant advancements underscore the expanding role of AI in shaping the future of cancer diagnosis and treatment. Although standardization, transparency, and equitable implementation must be addressed, AI brings hope for more personalized and effective therapies.
期刊介绍:
The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.