Scaling of the rotation number for perturbations of rational rotations.

IF 3.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chaos Pub Date : 2025-09-01 DOI:10.1063/5.0290311
Paul Glendinning
{"title":"Scaling of the rotation number for perturbations of rational rotations.","authors":"Paul Glendinning","doi":"10.1063/5.0290311","DOIUrl":null,"url":null,"abstract":"<p><p>The parameter dependence of the rotation number in families of circle maps, which are perturbations of rational rotations, is described. We show that if, at a critical parameter value, the map is a (rigid) rotation x→x+pq(mod1) with p and q coprime, then the rotation number is differentiable at that point provided a transversality condition holds, and hence, the rotation number scales linearly at this parameter. We provide an explicit and computable expression for the derivative in terms of the Fourier series of the map and illustrate the results with the Arnold circle map and some modifications. Piecewise linear circle maps can also be treated using the same techniques.</p>","PeriodicalId":9974,"journal":{"name":"Chaos","volume":"35 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0290311","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The parameter dependence of the rotation number in families of circle maps, which are perturbations of rational rotations, is described. We show that if, at a critical parameter value, the map is a (rigid) rotation x→x+pq(mod1) with p and q coprime, then the rotation number is differentiable at that point provided a transversality condition holds, and hence, the rotation number scales linearly at this parameter. We provide an explicit and computable expression for the derivative in terms of the Fourier series of the map and illustrate the results with the Arnold circle map and some modifications. Piecewise linear circle maps can also be treated using the same techniques.

有理旋转扰动下旋转数的缩放。
讨论了有理旋转摄动的圆映射族中旋转数的参数依赖性。我们证明了如果在一个临界参数值,映射是一个(刚体)旋转x→x+pq(mod1),且p和q是单素数,那么在此点上,如果横截性条件成立,旋转数是可微的,因此,旋转数在该参数处线性缩放。我们给出了映射的傅里叶级数的导数的一个显式和可计算的表达式,并用Arnold圆映射和一些修改来说明结果。分段线性圆图也可以用同样的技术处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chaos
Chaos 物理-物理:数学物理
CiteScore
5.20
自引率
13.80%
发文量
448
审稿时长
2.3 months
期刊介绍: Chaos: An Interdisciplinary Journal of Nonlinear Science is a peer-reviewed journal devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信