Screening of Transition Metal (Sc to Zn) Decorated Mo3C2 MXenes as a Catalyst Under Ambient Conditions for N2 to NH3 Electrocatalysis Using First Principles Method.

IF 2.2 3区 化学 Q3 CHEMISTRY, PHYSICAL
Nandhini Panjulingam, Senthilkumar Lakshmipathi
{"title":"Screening of Transition Metal (Sc to Zn) Decorated Mo<sub>3</sub>C<sub>2</sub> MXenes as a Catalyst Under Ambient Conditions for N<sub>2</sub> to NH<sub>3</sub> Electrocatalysis Using First Principles Method.","authors":"Nandhini Panjulingam, Senthilkumar Lakshmipathi","doi":"10.1002/cphc.202500330","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, 3d transition metal (TM) atom-decorated MXenes (TM@Mo<sub>3</sub>C<sub>2</sub> where TM = ScZn) are used as potential catalysts for the nitrogen reduction reaction (NRR) using density functional theory-based screening. The favorable work function, strong N<sub>2</sub> activation, effective hydrogen evolution reaction (HER) suppression, and high current density collectively establish V@Mo<sub>3</sub>C<sub>2</sub> as a highly promising NRR catalyst, warranting in-depth exploration. Ab initio molecular dynamics simulations confirm the thermal stability of V@Mo<sub>3</sub>C<sub>2</sub> at 300 K. The side-on N<sub>2</sub> adsorption on V@Mo<sub>3</sub>C<sub>2</sub> favors enzymatic and consecutive reaction pathways. Notably, the reaction free-energy changes in the consecutive pathway are exothermic, contributing to an exceptionally low potential-determining step. Furthermore, V@Mo<sub>3</sub>C<sub>2</sub> demonstrates a Faradaic efficiency <math> <semantics><mrow><mo>(</mo> <mi>F</mi> <msub><mi>E</mi> <mrow><mtext>NRR</mtext></mrow> </msub> <mo>)</mo></mrow> <annotation>$F E_{\\text{NRR}} \\left.\\right)$</annotation></semantics> </math> value of 99.9%. Overall, V@Mo<sub>3</sub>C<sub>2</sub> exhibits remarkable selectivity for the NRR compared to the HER, exhibiting a low current density, which inhibits the HER and high Faradaic efficiency. These findings demonstrate the potential of alternate TM-based MXenes surfaces, such as V@Mo<sub>3</sub>C<sub>2</sub>, for efficient ammonia synthesis.</p>","PeriodicalId":9819,"journal":{"name":"Chemphyschem","volume":" ","pages":"e202500330"},"PeriodicalIF":2.2000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemphyschem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cphc.202500330","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, 3d transition metal (TM) atom-decorated MXenes (TM@Mo3C2 where TM = ScZn) are used as potential catalysts for the nitrogen reduction reaction (NRR) using density functional theory-based screening. The favorable work function, strong N2 activation, effective hydrogen evolution reaction (HER) suppression, and high current density collectively establish V@Mo3C2 as a highly promising NRR catalyst, warranting in-depth exploration. Ab initio molecular dynamics simulations confirm the thermal stability of V@Mo3C2 at 300 K. The side-on N2 adsorption on V@Mo3C2 favors enzymatic and consecutive reaction pathways. Notably, the reaction free-energy changes in the consecutive pathway are exothermic, contributing to an exceptionally low potential-determining step. Furthermore, V@Mo3C2 demonstrates a Faradaic efficiency ( F E NRR ) $F E_{\text{NRR}} \left.\right)$ value of 99.9%. Overall, V@Mo3C2 exhibits remarkable selectivity for the NRR compared to the HER, exhibiting a low current density, which inhibits the HER and high Faradaic efficiency. These findings demonstrate the potential of alternate TM-based MXenes surfaces, such as V@Mo3C2, for efficient ammonia synthesis.

用第一性原理法筛选过渡金属(Sc to Zn)修饰mo3c2mxenes作为环境条件下N2 - NH3电催化催化剂
本研究采用密度泛函筛选方法,将三维过渡金属(TM)原子修饰的MXenes (TM@Mo3C2,其中TM = Sc - _ - Zn)作为氮还原反应(NRR)的潜在催化剂。良好的功函数、强的N2活化、有效的析氢反应(HER)抑制和高电流密度共同决定了V@Mo3C2是一种极具发展前景的NRR催化剂,值得深入探索。从头算分子动力学模拟证实了V@Mo3C2在300 K时的热稳定性。在V@Mo3C2上的侧对N2吸附有利于酶和连续反应途径。值得注意的是,连续途径中的反应自由能变化是放热的,这导致了极低的电位决定步骤。此外,V@Mo3C2证明了法拉第效率(F E NRR) $F E_{\text{NRR}} \left。\右)$ value为99.9%。总的来说,V@Mo3C2对NRR的选择性比HER高,表现出低电流密度,抑制了HER和高法拉第效率。这些发现证明了替代tm基MXenes表面的潜力,例如V@Mo3C2,用于有效的氨合成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemphyschem
Chemphyschem 化学-物理:原子、分子和化学物理
CiteScore
4.60
自引率
3.40%
发文量
425
审稿时长
1.1 months
期刊介绍: ChemPhysChem is one of the leading chemistry/physics interdisciplinary journals (ISI Impact Factor 2018: 3.077) for physical chemistry and chemical physics. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies. ChemPhysChem is an international source for important primary and critical secondary information across the whole field of physical chemistry and chemical physics. It integrates this wide and flourishing field ranging from Solid State and Soft-Matter Research, Electro- and Photochemistry, Femtochemistry and Nanotechnology, Complex Systems, Single-Molecule Research, Clusters and Colloids, Catalysis and Surface Science, Biophysics and Physical Biochemistry, Atmospheric and Environmental Chemistry, and many more topics. ChemPhysChem is peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信