{"title":"A survey on deep learning for drug-target binding prediction: models, benchmarks, evaluation, and case studies.","authors":"Kusal Debnath, Pratip Rana, Preetam Ghosh","doi":"10.1093/bib/bbaf491","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional drug discovery is expensive, time-consuming, and prone to failure. Artificial intelligence has become a potent substitute over the last decade, providing strong answers to challenging biological issues in this field. Among these difficulties, drug-target binding (DTB) is a key component of drug discovery techniques. In this context, drug-target affinity and drug-target interaction are complementary and essential frameworks that work together to improve our comprehension of DTB dynamics. In this work, we thoroughly analyze the most recent deep learning models, popular benchmark datasets, and assessment metrics for DTB prediction. We look at the paradigm shift in the development of drug discovery research since researchers started using deep learning as a potent tool for DTB prediction. In particular, we examine how methodologies have evolved, starting with early heterogeneous network-based approaches, progressing to graph-based approaches that were widely accepted, followed by modern attention-based architectures, and finally, the most recent multimodal approaches. We also provide case studies utilizing an extensive compound library against specific protein targets implicated in critical cancer pathways to demonstrate the usefulness of these approaches. In addition to summarizing the latest developments in DTB prediction models, this review also identifies their drawbacks. It also highlights the outlook for the DTB prediction domain and future research directions. Combined, these studies present a more comprehensive view of how deep learning offers a quantitative framework for researching drug-target relationships, speeding up the identification of new drug candidates and making it easier to identify possible DTBs.</p>","PeriodicalId":9209,"journal":{"name":"Briefings in bioinformatics","volume":"26 5","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12451107/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bib/bbaf491","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Conventional drug discovery is expensive, time-consuming, and prone to failure. Artificial intelligence has become a potent substitute over the last decade, providing strong answers to challenging biological issues in this field. Among these difficulties, drug-target binding (DTB) is a key component of drug discovery techniques. In this context, drug-target affinity and drug-target interaction are complementary and essential frameworks that work together to improve our comprehension of DTB dynamics. In this work, we thoroughly analyze the most recent deep learning models, popular benchmark datasets, and assessment metrics for DTB prediction. We look at the paradigm shift in the development of drug discovery research since researchers started using deep learning as a potent tool for DTB prediction. In particular, we examine how methodologies have evolved, starting with early heterogeneous network-based approaches, progressing to graph-based approaches that were widely accepted, followed by modern attention-based architectures, and finally, the most recent multimodal approaches. We also provide case studies utilizing an extensive compound library against specific protein targets implicated in critical cancer pathways to demonstrate the usefulness of these approaches. In addition to summarizing the latest developments in DTB prediction models, this review also identifies their drawbacks. It also highlights the outlook for the DTB prediction domain and future research directions. Combined, these studies present a more comprehensive view of how deep learning offers a quantitative framework for researching drug-target relationships, speeding up the identification of new drug candidates and making it easier to identify possible DTBs.
期刊介绍:
Briefings in Bioinformatics is an international journal serving as a platform for researchers and educators in the life sciences. It also appeals to mathematicians, statisticians, and computer scientists applying their expertise to biological challenges. The journal focuses on reviews tailored for users of databases and analytical tools in contemporary genetics, molecular and systems biology. It stands out by offering practical assistance and guidance to non-specialists in computerized methodologies. Covering a wide range from introductory concepts to specific protocols and analyses, the papers address bacterial, plant, fungal, animal, and human data.
The journal's detailed subject areas include genetic studies of phenotypes and genotypes, mapping, DNA sequencing, expression profiling, gene expression studies, microarrays, alignment methods, protein profiles and HMMs, lipids, metabolic and signaling pathways, structure determination and function prediction, phylogenetic studies, and education and training.