{"title":"Comparative Evaluation of Three Primary Antibody Clones for p16 Immunohistochemistry in Gynecologic Tumors.","authors":"Hiroshi Yoshida, Ayumi Sugitani, Mayumi Kobayashi-Kato, Masaya Uno, Mitsuya Ishikawa","doi":"10.3390/antib14030077","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>p16 immunohistochemistry (IHC) serves as a surrogate marker for high-risk human papillomavirus (hrHPV) and is widely used in gynecologic pathology. However, few studies have directly compared the staining performance and reproducibility of different p16 antibody clones in this context.</p><p><strong>Methods: </strong>We retrospectively evaluated 176 gynecologic tumor specimens including 42 whole slide sections and 134 tissue microarray cores from the cervix, endometrium, vulva, and ovary using three fully automated p16 IHC assays: E6H4 (Ventana/Roche), JC8 (Agilent/Dako), and 6H12 (Leica). Two pathologists independently reviewed each case, and concordance and interobserver agreement were analyzed. Sensitivity, specificity, and Cohen's κ statistics were calculated, with E6H4 serving as the reference.</p><p><strong>Results: </strong>All three antibody clones demonstrated excellent staining performance with preserved tissue morphology and minimal background artifacts. Concordance for p16 positivity/negativity was 100% across all clone pairings (95% CI: 97.9-100%). Interobserver reproducibility was also perfect, with a κ coefficient of 1.00 (95% CI: 0.94-1.00). Minor non-block staining patterns did not impair interpretability.</p><p><strong>Conclusions: </strong>Our findings indicate that E6H4, JC8, and 6H12 clones yield comparable staining results when used in conjunction with standardized automated protocols. These results support the practical interchangeability of these clones in clinical and research settings, particularly when cost, availability, or risk management require substitution. Laboratories should continue to perform internal validation and utilize external quality assurance programs when implementing p16 IHC.</p>","PeriodicalId":8188,"journal":{"name":"Antibodies","volume":"14 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12452752/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibodies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antib14030077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: p16 immunohistochemistry (IHC) serves as a surrogate marker for high-risk human papillomavirus (hrHPV) and is widely used in gynecologic pathology. However, few studies have directly compared the staining performance and reproducibility of different p16 antibody clones in this context.
Methods: We retrospectively evaluated 176 gynecologic tumor specimens including 42 whole slide sections and 134 tissue microarray cores from the cervix, endometrium, vulva, and ovary using three fully automated p16 IHC assays: E6H4 (Ventana/Roche), JC8 (Agilent/Dako), and 6H12 (Leica). Two pathologists independently reviewed each case, and concordance and interobserver agreement were analyzed. Sensitivity, specificity, and Cohen's κ statistics were calculated, with E6H4 serving as the reference.
Results: All three antibody clones demonstrated excellent staining performance with preserved tissue morphology and minimal background artifacts. Concordance for p16 positivity/negativity was 100% across all clone pairings (95% CI: 97.9-100%). Interobserver reproducibility was also perfect, with a κ coefficient of 1.00 (95% CI: 0.94-1.00). Minor non-block staining patterns did not impair interpretability.
Conclusions: Our findings indicate that E6H4, JC8, and 6H12 clones yield comparable staining results when used in conjunction with standardized automated protocols. These results support the practical interchangeability of these clones in clinical and research settings, particularly when cost, availability, or risk management require substitution. Laboratories should continue to perform internal validation and utilize external quality assurance programs when implementing p16 IHC.
期刊介绍:
Antibodies (ISSN 2073-4468), an international, peer-reviewed open access journal which provides an advanced forum for studies related to antibodies and antigens. It publishes reviews, research articles, communications and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. Electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material. This journal covers all topics related to antibodies and antigens, topics of interest include (but are not limited to): antibody-producing cells (including B cells), antibody structure and function, antibody-antigen interactions, Fc receptors, antibody manufacturing antibody engineering, antibody therapy, immunoassays, antibody diagnosis, tissue antigens, exogenous antigens, endogenous antigens, autoantigens, monoclonal antibodies, natural antibodies, humoral immune responses, immunoregulatory molecules.