Oligomerization-Induced Supramolecular Glass with Superior Processability and Optical Functions

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zixuan Liu, Lin Wang, Yang Yang, Peng Meng, Xiaodong Wang, Hang Meng, Dongchen Qi, Hongxia Wang, Xiaofeng Liu, Jingsan Xu
{"title":"Oligomerization-Induced Supramolecular Glass with Superior Processability and Optical Functions","authors":"Zixuan Liu,&nbsp;Lin Wang,&nbsp;Yang Yang,&nbsp;Peng Meng,&nbsp;Xiaodong Wang,&nbsp;Hang Meng,&nbsp;Dongchen Qi,&nbsp;Hongxia Wang,&nbsp;Xiaofeng Liu,&nbsp;Jingsan Xu","doi":"10.1002/adom.202501259","DOIUrl":null,"url":null,"abstract":"<p>The fabrication of glasses, including silicate glasses, polymers, and amorphous metals, typically relies on the melting-quenching technique. However, this approach faces significant challenges when applied to recently emerging molecular glasses due to the inherent thermal instability of small molecules. Herein, the discovery of a new supramolecular glass (BGG) is presented, formed by a unique melting-quenching method that leverages unusual chemistry pathways. By manipulating the heating of a small molecule (benzoguanamine, BG), catalyst-free self-condensation reactions occur and produce multiple oligomers in a liquid state. The resulting high compositional and conformational entropy suppresses crystallization, allowing solidification into a rigid supramolecular glass under robust conditions. Despite being composed of low-weight molecules, the extensive intermolecular interactions endow BGG with distinct aggregation-induced emission (AIE, quantum yield up to 60%), polymer-like Young's modulus (7.95 GPa), and superior glass transition temperature (100.1 °C). BGG's excellent processability is exemplified by the fabrication of thin films and fibers, showcasing potential applications in photovoltaics and photonic waveguides. BGG also serves as a platform for synthesizing diverse donor-acceptor hybrids with &gt; 95% energy transfer efficiency, enabling the creation of advanced materials with customizable functionalities.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 27","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202501259","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501259","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The fabrication of glasses, including silicate glasses, polymers, and amorphous metals, typically relies on the melting-quenching technique. However, this approach faces significant challenges when applied to recently emerging molecular glasses due to the inherent thermal instability of small molecules. Herein, the discovery of a new supramolecular glass (BGG) is presented, formed by a unique melting-quenching method that leverages unusual chemistry pathways. By manipulating the heating of a small molecule (benzoguanamine, BG), catalyst-free self-condensation reactions occur and produce multiple oligomers in a liquid state. The resulting high compositional and conformational entropy suppresses crystallization, allowing solidification into a rigid supramolecular glass under robust conditions. Despite being composed of low-weight molecules, the extensive intermolecular interactions endow BGG with distinct aggregation-induced emission (AIE, quantum yield up to 60%), polymer-like Young's modulus (7.95 GPa), and superior glass transition temperature (100.1 °C). BGG's excellent processability is exemplified by the fabrication of thin films and fibers, showcasing potential applications in photovoltaics and photonic waveguides. BGG also serves as a platform for synthesizing diverse donor-acceptor hybrids with > 95% energy transfer efficiency, enabling the creation of advanced materials with customizable functionalities.

Abstract Image

Abstract Image

Abstract Image

具有优异加工性能和光学功能的寡聚化诱导超分子玻璃
玻璃的制造,包括硅酸盐玻璃、聚合物和非晶态金属,通常依赖于熔融淬火技术。然而,由于小分子固有的热不稳定性,这种方法在应用于最近出现的分子玻璃时面临着重大挑战。本文提出了一种新的超分子玻璃(BGG)的发现,它是通过一种独特的熔融淬火方法形成的,该方法利用了不寻常的化学途径。通过控制加热小分子(苯并鸟胺,BG),发生无催化剂的自缩合反应,并产生液态的多种低聚物。由此产生的高组成和构象熵抑制了结晶,允许在坚固的条件下凝固成刚性的超分子玻璃。尽管BGG由低质量分子组成,但广泛的分子间相互作用使其具有明显的聚集诱导发射(AIE,量子产率高达60%),类似聚合物的杨氏模量(7.95 GPa)和优越的玻璃化转变温度(100.1℃)。BGG优异的可加工性在薄膜和光纤的制造中得到了体现,在光伏和光子波导中展示了潜在的应用。BGG还可以作为合成多种供体-受体混合材料的平台,具有95%的能量传递效率,可以创建具有可定制功能的先进材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信