Bandgap Tuning of β-(AlxGa1-x)2O3 Nanosheets via Liquid Metal Interface Engineering

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Somayeh Rafiezadeh, Ali Zavabeti, Jianbo Tang, Andrew J. Christofferson, Nastaran Meftahi, Matthew R. Phillips, Kourosh Kalantar-Zadeh, Mohammad B. Ghasemian, Cuong Ton-That
{"title":"Bandgap Tuning of β-(AlxGa1-x)2O3 Nanosheets via Liquid Metal Interface Engineering","authors":"Somayeh Rafiezadeh,&nbsp;Ali Zavabeti,&nbsp;Jianbo Tang,&nbsp;Andrew J. Christofferson,&nbsp;Nastaran Meftahi,&nbsp;Matthew R. Phillips,&nbsp;Kourosh Kalantar-Zadeh,&nbsp;Mohammad B. Ghasemian,&nbsp;Cuong Ton-That","doi":"10.1002/adom.202501116","DOIUrl":null,"url":null,"abstract":"<p>Precise engineering of the electronic band structure in 2D metal oxides is essential for advancing optical and electronic nanodevices, yet achieving compositional control at the nanoscale remains challenging. Here, a low-temperature liquid metal-based synthesis method is used to fabricate β-(Al<i><sub>x</sub></i>Ga<sub>1-</sub><i><sub>x</sub></i>)<sub>2</sub>O<sub>3</sub> nanosheets with tunable composition (<i>x </i>= 0–0.88). This approach enables selective aluminium enrichment in nanosheets while preserving the monoclinic crystal structure and adopting the (−201) orientation, similar to conventional β-Ga<sub>2</sub>O<sub>3</sub> thin films. The synthesized nanosheets exhibit large lateral dimensions (&gt;100 µm) and an average thickness of 3.2 ± 0.5 nm, making them suitable for nanoscale device applications. By varying the Al content from 0 to 10 at% in the liquid metal, the bandgap is tuned from 4.50 eV (pure β-Ga<sub>2</sub>O<sub>3</sub>) to 6.41 eV (β-(Al<sub>0.88</sub>Ga<sub>0.12</sub>)<sub>2</sub>O<sub>3</sub>). Molecular dynamics simulations provide insights into the Al enrichment mechanism at the liquid metal interface. The β-(Al<i><sub>x</sub></i>Ga<sub>1-</sub><i><sub>x</sub></i>)<sub>2</sub>O<sub>3</sub> nanosheets retain key β-Ga<sub>2</sub>O<sub>3</sub> characteristics, including self-trapped hole formation, ensuring structural and electronic integrity. The liquid metal synthesis method overcomes limitations of conventional deposition techniques, offering a scalable approach for tailoring 2D metal oxide properties and enabling bandgap-engineered optoelectronic applications.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 27","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202501116","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202501116","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise engineering of the electronic band structure in 2D metal oxides is essential for advancing optical and electronic nanodevices, yet achieving compositional control at the nanoscale remains challenging. Here, a low-temperature liquid metal-based synthesis method is used to fabricate β-(AlxGa1-x)2O3 nanosheets with tunable composition (x = 0–0.88). This approach enables selective aluminium enrichment in nanosheets while preserving the monoclinic crystal structure and adopting the (−201) orientation, similar to conventional β-Ga2O3 thin films. The synthesized nanosheets exhibit large lateral dimensions (>100 µm) and an average thickness of 3.2 ± 0.5 nm, making them suitable for nanoscale device applications. By varying the Al content from 0 to 10 at% in the liquid metal, the bandgap is tuned from 4.50 eV (pure β-Ga2O3) to 6.41 eV (β-(Al0.88Ga0.12)2O3). Molecular dynamics simulations provide insights into the Al enrichment mechanism at the liquid metal interface. The β-(AlxGa1-x)2O3 nanosheets retain key β-Ga2O3 characteristics, including self-trapped hole formation, ensuring structural and electronic integrity. The liquid metal synthesis method overcomes limitations of conventional deposition techniques, offering a scalable approach for tailoring 2D metal oxide properties and enabling bandgap-engineered optoelectronic applications.

Abstract Image

Abstract Image

Abstract Image

基于液态金属界面工程的β-(AlxGa1-x)2O3纳米片带隙调谐
二维金属氧化物中电子能带结构的精确工程对于推进光学和电子纳米器件至关重要,但在纳米尺度上实现成分控制仍然具有挑战性。本文采用低温液态金属合成方法制备了成分可调(x = 0-0.88)的β-(AlxGa1-x)2O3纳米片。这种方法可以在纳米片上选择性富集铝,同时保持单斜晶结构并采用(−201)取向,类似于传统的β-Ga2O3薄膜。合成的纳米片具有大的横向尺寸(>100 μ m)和平均厚度为3.2±0.5 nm,使其适合纳米级器件应用。通过改变液态金属中Al含量从0到10 at%,带隙从4.50 eV(纯β- ga2o3)调整到6.41 eV (β-(Al0.88Ga0.12)2O3)。分子动力学模拟提供了对液态金属界面Al富集机制的深入了解。β-(AlxGa1-x)2O3纳米片保留了β- ga2o3的关键特性,包括自困空穴形成,确保了结构和电子完整性。液态金属合成方法克服了传统沉积技术的局限性,为定制2D金属氧化物性能和实现带隙工程光电应用提供了一种可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信