Enhanced THz Emission From Ultrathin Ta/Fe/Pt Spintronic Trilayers

IF 7.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Evangelos Th. Papaioannou, Laura Scheuer, Garik Torosyan, George P. Dimitrakopulos, Sławomir Kret, Alina D. Crisan, Ovidiu Crisan, René Beigang, Thomas Kehagias
{"title":"Enhanced THz Emission From Ultrathin Ta/Fe/Pt Spintronic Trilayers","authors":"Evangelos Th. Papaioannou,&nbsp;Laura Scheuer,&nbsp;Garik Torosyan,&nbsp;George P. Dimitrakopulos,&nbsp;Sławomir Kret,&nbsp;Alina D. Crisan,&nbsp;Ovidiu Crisan,&nbsp;René Beigang,&nbsp;Thomas Kehagias","doi":"10.1002/adom.202500874","DOIUrl":null,"url":null,"abstract":"<p>Terahertz (THz) spintronic emitters represent a novel class of heterostructures composed of ferromagnetic (FM) and non-magnetic (NM) metallic layers that strongly emit terahertz (THz) radiation upon femtosecond laser pulse excitation. The optimal geometric configuration to maximize the strength of the emission is currently considered a trilayer structure, NM<sub>1</sub>/FM/NM<sub>2</sub>, where the FM layer is confined between two NM layers with opposite spin Hall angles. To investigate this, ultrathin Ta/Fe/Pt trilayers are fabricated and their THz emission profiles are analyzed. These results show that the highest THz emission is achieved for the sample of Ta (1.5 nm)/Fe (2 nm)/Pt (2 nm), demonstrating a significant enhancement compared to standard FM/NM bilayers. Furthermore, the thickness dependence of the THz emission is modeled in Ta (<i>t<sub>1</sub></i> nm)/Fe (2 nm)/Pt <i>(t<sub>2</sub></i> nm), varying t<sub>1</sub> and t<sub>2</sub> from 1 nm to 3 nm. From this analysis, spin diffusion lengths of λ<sub>Pt</sub> = 1.2 nm and λ<sub>Ta</sub> = 0.85 nm are extracted. The structure–property relationship is assessed via transmission electron microscopy, revealing that an epitaxial single-crystalline Ta layer covers the MgO surface with Ta adopting a high-resistivity <i>fcc</i> allotropic phase with a lattice parameter of <i>a</i> = 0.436 nm. This phase, together with the prerequisite for low Ta+Pt thickness, emerges as a key factor in achieving high THz emission from trilayer structures.</p>","PeriodicalId":116,"journal":{"name":"Advanced Optical Materials","volume":"13 27","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/adom.202500874","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Optical Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adom.202500874","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Terahertz (THz) spintronic emitters represent a novel class of heterostructures composed of ferromagnetic (FM) and non-magnetic (NM) metallic layers that strongly emit terahertz (THz) radiation upon femtosecond laser pulse excitation. The optimal geometric configuration to maximize the strength of the emission is currently considered a trilayer structure, NM1/FM/NM2, where the FM layer is confined between two NM layers with opposite spin Hall angles. To investigate this, ultrathin Ta/Fe/Pt trilayers are fabricated and their THz emission profiles are analyzed. These results show that the highest THz emission is achieved for the sample of Ta (1.5 nm)/Fe (2 nm)/Pt (2 nm), demonstrating a significant enhancement compared to standard FM/NM bilayers. Furthermore, the thickness dependence of the THz emission is modeled in Ta (t1 nm)/Fe (2 nm)/Pt (t2 nm), varying t1 and t2 from 1 nm to 3 nm. From this analysis, spin diffusion lengths of λPt = 1.2 nm and λTa = 0.85 nm are extracted. The structure–property relationship is assessed via transmission electron microscopy, revealing that an epitaxial single-crystalline Ta layer covers the MgO surface with Ta adopting a high-resistivity fcc allotropic phase with a lattice parameter of a = 0.436 nm. This phase, together with the prerequisite for low Ta+Pt thickness, emerges as a key factor in achieving high THz emission from trilayer structures.

Abstract Image

Abstract Image

Abstract Image

超薄Ta/Fe/Pt自旋电子三层膜增强太赫兹辐射
太赫兹(THz)自旋电子发射器是一类由铁磁(FM)和非磁性(NM)金属层组成的新型异质结构,在飞秒激光脉冲激发下强烈发射太赫兹(THz)辐射。目前认为,最大限度提高发射强度的最佳几何构型是三层结构NM1/FM/NM2,其中FM层被限制在两个具有相反自旋霍尔角的NM层之间。为此,制备了超薄的Ta/Fe/Pt三层薄膜,并对其太赫兹发射谱进行了分析。这些结果表明,Ta (1.5 nm)/Fe (2 nm)/Pt (2 nm)样品的太赫兹辐射最高,与标准FM/ nm双层膜相比有显著增强。此外,太赫兹辐射的厚度依赖模型为Ta (t1 nm)/Fe (2 nm)/Pt (t2 nm), t1和t2在1 nm到3 nm之间变化。通过分析得到λPt = 1.2 nm和λTa = 0.85 nm的自旋扩散长度。通过透射电镜对结构-性能关系进行了评价,发现外延单晶Ta层覆盖在MgO表面,Ta采用高电阻率fcc同素异形体相,晶格参数为a = 0.436 nm。这一阶段,连同低Ta+Pt厚度的先决条件,成为实现三层结构高太赫兹发射的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Optical Materials
Advanced Optical Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-OPTICS
CiteScore
13.70
自引率
6.70%
发文量
883
审稿时长
1.5 months
期刊介绍: Advanced Optical Materials, part of the esteemed Advanced portfolio, is a unique materials science journal concentrating on all facets of light-matter interactions. For over a decade, it has been the preferred optical materials journal for significant discoveries in photonics, plasmonics, metamaterials, and more. The Advanced portfolio from Wiley is a collection of globally respected, high-impact journals that disseminate the best science from established and emerging researchers, aiding them in fulfilling their mission and amplifying the reach of their scientific discoveries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信