Orthogonality of quasi-spectral polynomials of Jacobi and Laguerre type

IF 1.6 3区 数学 Q1 MATHEMATICS
Vikash Kumar, A. Swaminathan
{"title":"Orthogonality of quasi-spectral polynomials of Jacobi and Laguerre type","authors":"Vikash Kumar,&nbsp;A. Swaminathan","doi":"10.1007/s13324-025-01130-1","DOIUrl":null,"url":null,"abstract":"<div><p>In this work, the explicit expressions of coefficients involved in quasi Christoffel polynomials of order one and quasi-Geronimus polynomials of order one are determined for Jacobi polynomials. These coefficients are responsible for establishing the orthogonality of quasi-spectral polynomials of Jacobi polynomials. Additionally, the orthogonality of quasi-Christoffel Laguerre polynomials of order one is derived. In the process of achieving orthogonality, in both cases, one zero is located on the boundary of the support of the measure. This allows us to derive the chain sequence and minimal parameter sequence at the point lying at the end point of the support of the measure. Furthermore, the interlacing properties among the zeros of quasi-spectral orthogonal Jacobi polynomials and Jacobi polynomials are illustrated. Finally, we define the quasi-Christoffel polynomials of order one on the unit circle and analyze the location of their zeros for specific examples, as well as propose the problem in the general setup.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01130-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, the explicit expressions of coefficients involved in quasi Christoffel polynomials of order one and quasi-Geronimus polynomials of order one are determined for Jacobi polynomials. These coefficients are responsible for establishing the orthogonality of quasi-spectral polynomials of Jacobi polynomials. Additionally, the orthogonality of quasi-Christoffel Laguerre polynomials of order one is derived. In the process of achieving orthogonality, in both cases, one zero is located on the boundary of the support of the measure. This allows us to derive the chain sequence and minimal parameter sequence at the point lying at the end point of the support of the measure. Furthermore, the interlacing properties among the zeros of quasi-spectral orthogonal Jacobi polynomials and Jacobi polynomials are illustrated. Finally, we define the quasi-Christoffel polynomials of order one on the unit circle and analyze the location of their zeros for specific examples, as well as propose the problem in the general setup.

Jacobi和Laguerre型拟谱多项式的正交性
本文确定了Jacobi多项式中1阶拟Christoffel多项式和1阶拟geronimus多项式中系数的显式表达式。这些系数负责建立雅可比多项式的拟谱多项式的正交性。此外,还导出了1阶拟christoffel Laguerre多项式的正交性。在实现正交的过程中,在这两种情况下,一个零都位于度量的支持边界上。这使我们能够推导出链序列和最小参数序列在点上躺在终点的支持措施。进一步说明了拟谱正交雅可比多项式和雅可比多项式零点间的交错性质。最后,我们定义了单位圆上的1阶拟克里斯托费尔多项式,并针对具体的例子分析了其零点的位置,并提出了一般设置下的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信