Cauchy product of iterative functional equation

IF 0.7 3区 数学 Q2 MATHEMATICS
Akash Pradhan, Deepesh Kumar Patel, Hemant Kumar Nashine
{"title":"Cauchy product of iterative functional equation","authors":"Akash Pradhan,&nbsp;Deepesh Kumar Patel,&nbsp;Hemant Kumar Nashine","doi":"10.1007/s00010-025-01159-4","DOIUrl":null,"url":null,"abstract":"<div><p>This manuscript examines the existence and uniqueness of differentiable and continuous solutions of the iterative functional equation of the form </p><div><div><span>$$\\begin{aligned} \\sum \\limits _{i=0}^{n}\\lambda _{i}f^{i}(\\varkappa )f^{n-i}(\\varkappa )= F (\\varkappa ), \\quad \\varkappa \\in [a,b], \\end{aligned}$$</span></div></div><p>where <span>\\(\\lambda _{i}\\)</span>’s are real constants and <span>\\( F \\)</span> is a given function. The novelty of this work lies in the generalization of the iterative root problem when <i>n</i> is even and all <span>\\(\\lambda _i\\)</span>’s are zero except for <span>\\(\\lambda _{n/2}\\)</span>. This generalization offers the advantage of covering a wider class of functional equations. Numerical examples are presented to validate the existence results, and the stability of each solution is thoroughly analyzed.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 4","pages":"1585 - 1602"},"PeriodicalIF":0.7000,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-025-01159-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This manuscript examines the existence and uniqueness of differentiable and continuous solutions of the iterative functional equation of the form

$$\begin{aligned} \sum \limits _{i=0}^{n}\lambda _{i}f^{i}(\varkappa )f^{n-i}(\varkappa )= F (\varkappa ), \quad \varkappa \in [a,b], \end{aligned}$$

where \(\lambda _{i}\)’s are real constants and \( F \) is a given function. The novelty of this work lies in the generalization of the iterative root problem when n is even and all \(\lambda _i\)’s are zero except for \(\lambda _{n/2}\). This generalization offers the advantage of covering a wider class of functional equations. Numerical examples are presented to validate the existence results, and the stability of each solution is thoroughly analyzed.

迭代泛函方程的柯西积
本文研究了形式为$$\begin{aligned} \sum \limits _{i=0}^{n}\lambda _{i}f^{i}(\varkappa )f^{n-i}(\varkappa )= F (\varkappa ), \quad \varkappa \in [a,b], \end{aligned}$$的迭代泛函方程的可微解和连续解的存在唯一性,其中\(\lambda _{i}\)为实常数,\( F \)为给定函数。本工作的新颖之处在于,当n为偶数且\(\lambda _i\)除\(\lambda _{n/2}\)外均为零时,迭代根问题得到了推广。这种推广提供了覆盖更广泛的泛函方程的优势。通过数值算例对存在性结果进行了验证,并对各解的稳定性进行了深入分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信