New lower bound for the optimal congruent geodesic ball packing density of screw motion groups in \(\textbf{H}^2\!\times \!\textbf{R}\) space

IF 0.7 3区 数学 Q2 MATHEMATICS
Arnasli Yahya, Jenő Szirmai
{"title":"New lower bound for the optimal congruent geodesic ball packing density of screw motion groups in \\(\\textbf{H}^2\\!\\times \\!\\textbf{R}\\) space","authors":"Arnasli Yahya,&nbsp;Jenő Szirmai","doi":"10.1007/s00010-025-01166-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we present a new record for the densest geodesic congruent ball packing configurations in <span>\\(\\textbf{H}^2\\!\\times \\!\\textbf{R}\\)</span> geometry, generated by screw motion groups. These groups are derived from the direct product of rotational groups on <span>\\(\\textbf{H}^2\\)</span> and some translation components on the real fibre direction <span>\\(\\textbf{R}\\)</span> that can be determined by the corresponding Frobenius congruences. Moreover, we developed a procedure to determine the optimal radius for the densest geodesic ball packing configurations related to the considered screw motion groups. The highest packing density, <span>\\(\\approx 0.80529\\)</span>, is achieved by a multi-transitive case given by rotational parameters (2, 20, 4). E. Molnár demonstrated that homogeneous 3-spaces can be uniformly interpreted in the projective 3-sphere <span>\\(\\mathcal{P}\\mathcal{S}^3(\\textbf{V}^4, \\varvec{V}_4, \\textbf{R})\\)</span>. We use this projective model of <span>\\(\\textbf{H}^2\\!\\times \\!\\textbf{R}\\)</span> to compute and visualize the locally optimal geodesic ball arrangements.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 4","pages":"1521 - 1550"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-025-01166-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a new record for the densest geodesic congruent ball packing configurations in \(\textbf{H}^2\!\times \!\textbf{R}\) geometry, generated by screw motion groups. These groups are derived from the direct product of rotational groups on \(\textbf{H}^2\) and some translation components on the real fibre direction \(\textbf{R}\) that can be determined by the corresponding Frobenius congruences. Moreover, we developed a procedure to determine the optimal radius for the densest geodesic ball packing configurations related to the considered screw motion groups. The highest packing density, \(\approx 0.80529\), is achieved by a multi-transitive case given by rotational parameters (2, 20, 4). E. Molnár demonstrated that homogeneous 3-spaces can be uniformly interpreted in the projective 3-sphere \(\mathcal{P}\mathcal{S}^3(\textbf{V}^4, \varvec{V}_4, \textbf{R})\). We use this projective model of \(\textbf{H}^2\!\times \!\textbf{R}\) to compute and visualize the locally optimal geodesic ball arrangements.

\(\textbf{H}^2\!\times \!\textbf{R}\)空间中螺旋运动群的最优同同测地线球填充密度的新下界
在本文中,我们提出了在\(\textbf{H}^2\!\times \!\textbf{R}\)几何中由螺旋运动群产生的最密集的测地线同同球填充构型的新记录。这些群是由\(\textbf{H}^2\)上的旋转群和真实纤维方向\(\textbf{R}\)上的一些平移分量的直接乘积推导出来的,这些平移分量可以由相应的Frobenius同余确定。此外,我们开发了一个程序,以确定与考虑的螺杆运动组相关的最密集的测地线球填料配置的最佳半径。最高的填充密度\(\approx 0.80529\)是由旋转参数(2,20,4)给出的多传递情况实现的。E. Molnár证明了齐次3-空间可以在射影3球\(\mathcal{P}\mathcal{S}^3(\textbf{V}^4, \varvec{V}_4, \textbf{R})\)中得到一致解释。我们使用\(\textbf{H}^2\!\times \!\textbf{R}\)的投影模型来计算和可视化局部最优的测地线球排列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信