Levin–Cochran–Lee inequalities and best constants on homogeneous groups

IF 0.7 3区 数学 Q2 MATHEMATICS
Michael Ruzhansky, Markos Fisseha Yimer
{"title":"Levin–Cochran–Lee inequalities and best constants on homogeneous groups","authors":"Michael Ruzhansky,&nbsp;Markos Fisseha Yimer","doi":"10.1007/s00010-024-01143-4","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we apply a direct method instead of a limit approach, for proving the Levin–Cochran–Lee inequalities. First, we state and prove Levin–Cochran–Lee type inequalities on a homogeneous group <span>\\(\\mathbb {G}\\)</span> with parameters <span>\\(0&lt;p\\le q&lt;\\infty \\)</span>. Furthermore, for the case <span>\\(p=q\\)</span>, we prove the sharp inequalities with power weights and derive some other new inequalities.\n</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 4","pages":"1603 - 1623"},"PeriodicalIF":0.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01143-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we apply a direct method instead of a limit approach, for proving the Levin–Cochran–Lee inequalities. First, we state and prove Levin–Cochran–Lee type inequalities on a homogeneous group \(\mathbb {G}\) with parameters \(0<p\le q<\infty \). Furthermore, for the case \(p=q\), we prove the sharp inequalities with power weights and derive some other new inequalities.

齐次群上的Levin-Cochran-Lee不等式和最佳常数
本文用直接法代替极限法来证明Levin-Cochran-Lee不等式。首先,我们陈述并证明了一个参数为\(0<p\le q<\infty \)的齐次群\(\mathbb {G}\)上的Levin-Cochran-Lee型不等式。进一步,对于\(p=q\)情况,我们证明了幂权尖锐不等式,并推导了一些新的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信