Discrete time scales with two quanta and Ulam stability

IF 0.7 3区 数学 Q2 MATHEMATICS
Douglas R. Anderson, Masakazu Onitsuka
{"title":"Discrete time scales with two quanta and Ulam stability","authors":"Douglas R. Anderson,&nbsp;Masakazu Onitsuka","doi":"10.1007/s00010-025-01170-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the Ulam stability of quantum equations on time scales that alternate between two quanta is considered. We show that linear equations of first order with constant coefficient or of Euler type are Ulam stable across large regions of the complex plane, and give the best Ulam constants for those regions. We also show, however, that linear equations of first order of period-1 type are not Ulam stable for any parameter value in the complex plane. This is due to the importance of pre-positioning the non-autonomous term for Ulam stability.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 4","pages":"1741 - 1761"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-025-01170-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the Ulam stability of quantum equations on time scales that alternate between two quanta is considered. We show that linear equations of first order with constant coefficient or of Euler type are Ulam stable across large regions of the complex plane, and give the best Ulam constants for those regions. We also show, however, that linear equations of first order of period-1 type are not Ulam stable for any parameter value in the complex plane. This is due to the importance of pre-positioning the non-autonomous term for Ulam stability.

Abstract Image

具有双量子和乌兰稳定性的离散时间尺度
在本研究中,考虑了在两个量子之间交替的时间尺度上的量子方程的Ulam稳定性。我们证明了一阶常系数线性方程或Euler型线性方程在复平面的大区域上是Ulam稳定的,并给出了这些区域的最佳Ulam常数。然而,我们也证明了周期-1型的一阶线性方程对于复平面上的任何参数值都不是Ulam稳定的。这是由于预先为乌拉姆稳定设定非自治术语的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信