More results on the signed double Roman k-domination in graphs

IF 0.7 3区 数学 Q2 MATHEMATICS
Michael A. Henning, Lutz Volkmann
{"title":"More results on the signed double Roman k-domination in graphs","authors":"Michael A. Henning,&nbsp;Lutz Volkmann","doi":"10.1007/s00010-025-01192-3","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(k\\ge 1\\)</span> be an integer, and let <i>G</i> be a finite and simple graph with vertex set <i>V</i>(<i>G</i>). A signed double Roman <i>k</i>-dominating function (SDRkDF) on a graph <i>G</i> is defined in [Signed double Roman <i>k</i>-domination in graphs, Australas. J. Combin. 72 (2018), 82–105] as a function <span>\\(f :V(G) \\rightarrow \\{-1,1,2,3\\}\\)</span> satisfying the conditions that <span>\\(\\sum _{x\\in N[v]}f(x)\\ge k\\)</span> for each vertex <span>\\(v\\in V(G)\\)</span>, where <i>N</i>[<i>v</i>] is the closed neighborhood of <i>v</i>, every vertex <i>u</i> for which <span>\\(f(u)=-1\\)</span> is adjacent to at least one vertex <i>v</i> for which <span>\\(f(v)=3\\)</span> or adjacent to two vertices <i>x</i> and <i>y</i> with <span>\\(f(x)=f(y)=2\\)</span>, and every vertex <i>u</i> with <span>\\(f(u)=1\\)</span> is adjacent to vertex <i>v</i> with <span>\\(f(v)\\ge 2\\)</span>. The weight of an SDRkDF <i>f</i> is <span>\\(\\textrm{w}(f) = \\sum _{v\\in V(G)}f(v)\\)</span>. The signed double Roman <i>k</i>-domination number <span>\\(\\gamma _{\\textrm{sdR}}^k(G)\\)</span> of <i>G</i> is the minimum weight among all SDRkDF on <i>G</i>. In this paper we continue the study of the signed double Roman <i>k</i>-domination number of graphs, and we present new bounds on <span>\\(\\gamma _{\\textrm{sdR}}^k(G)\\)</span>. In addition, we determine the signed double Roman <i>k</i>-domination number of some classes of graphs. Some of our results are extensions of well-known properties of the signed double Roman domination number, <span>\\(\\gamma _{\\textrm{sdR}}(G)=\\gamma _{\\textrm{sdR}}^1(G)\\)</span>, introduced and investigated in [1, 2].</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"99 4","pages":"1903 - 1921"},"PeriodicalIF":0.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-025-01192-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-025-01192-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let \(k\ge 1\) be an integer, and let G be a finite and simple graph with vertex set V(G). A signed double Roman k-dominating function (SDRkDF) on a graph G is defined in [Signed double Roman k-domination in graphs, Australas. J. Combin. 72 (2018), 82–105] as a function \(f :V(G) \rightarrow \{-1,1,2,3\}\) satisfying the conditions that \(\sum _{x\in N[v]}f(x)\ge k\) for each vertex \(v\in V(G)\), where N[v] is the closed neighborhood of v, every vertex u for which \(f(u)=-1\) is adjacent to at least one vertex v for which \(f(v)=3\) or adjacent to two vertices x and y with \(f(x)=f(y)=2\), and every vertex u with \(f(u)=1\) is adjacent to vertex v with \(f(v)\ge 2\). The weight of an SDRkDF f is \(\textrm{w}(f) = \sum _{v\in V(G)}f(v)\). The signed double Roman k-domination number \(\gamma _{\textrm{sdR}}^k(G)\) of G is the minimum weight among all SDRkDF on G. In this paper we continue the study of the signed double Roman k-domination number of graphs, and we present new bounds on \(\gamma _{\textrm{sdR}}^k(G)\). In addition, we determine the signed double Roman k-domination number of some classes of graphs. Some of our results are extensions of well-known properties of the signed double Roman domination number, \(\gamma _{\textrm{sdR}}(G)=\gamma _{\textrm{sdR}}^1(G)\), introduced and investigated in [1, 2].

图中符号双罗马k-支配的更多结果
设\(k\ge 1\)为整数,设G为顶点集V(G)的有限简单图。在[signed double Roman k-domination in graphs, Australas]中定义了图G上的一个有符号双罗马k-支配函数(SDRkDF)。J. Combin. 72(2018), 82-105]作为一个函数\(f :V(G) \rightarrow \{-1,1,2,3\}\),满足如下条件\(\sum _{x\in N[v]}f(x)\ge k\)对于每个顶点\(v\in V(G)\),其中N[v]是v的闭邻域,对于每个顶点u, \(f(u)=-1\)与至少一个顶点v相邻,对于每个顶点u, \(f(v)=3\)或与两个顶点x和y相邻\(f(x)=f(y)=2\),并且与\(f(u)=1\)相邻的每个顶点u与顶点v相邻\(f(v)\ge 2\)。SDRkDF的权重为\(\textrm{w}(f) = \sum _{v\in V(G)}f(v)\)。G的有符号双Roman k-支配数\(\gamma _{\textrm{sdR}}^k(G)\)是G上所有SDRkDF中的最小权值。本文继续研究了图的有符号双Roman k-支配数,并在\(\gamma _{\textrm{sdR}}^k(G)\)上给出了新的界。此外,我们还确定了一些图类的符号双罗马k-支配数。我们的一些结果是在[1,2]中介绍和研究的著名的有符号双罗马支配数\(\gamma _{\textrm{sdR}}(G)=\gamma _{\textrm{sdR}}^1(G)\)的性质的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Aequationes Mathematicae
Aequationes Mathematicae MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.70
自引率
12.50%
发文量
62
审稿时长
>12 weeks
期刊介绍: aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信