{"title":"A lightweight transformer winding condition assessment method with multi-scale image fusion and an improved attention mechanism","authors":"Yongteng Sun, Hongzhong Ma","doi":"10.1016/j.compind.2025.104377","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, vibration image analysis has emerged as a promising technique for assessing transformer winding conditions. This study proposes a lightweight assessment model for transformer windings, integrating an image fusion module and a recognition module to address the accuracy limitations of single-image analysis and the high computational demands of multi-scale analysis. First, a Parallel Efficient Mixed Attention Mechanism (PEMAM) is proposed, designed to enhance adaptability to transformer vibration signals while maintaining a low parameter count. This mechanism improves the feature extraction capability of the Image Fusion Framework based on a Convolutional Neural Network, significantly boosting the signal-to-noise ratio and enhancing resistance to distortion in fused images. Subsequently, multi-scale Markov field images, derived from the time and frequency domain features of vibration signals, are fused and fed into the PEMAM-enhanced recognition module for condition assessment. Experimental results indicate that the proposed method achieves 99.63 % accuracy in identifying transformer winding conditions while maintaining low model complexity and computational cost.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"173 ","pages":"Article 104377"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361525001423","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, vibration image analysis has emerged as a promising technique for assessing transformer winding conditions. This study proposes a lightweight assessment model for transformer windings, integrating an image fusion module and a recognition module to address the accuracy limitations of single-image analysis and the high computational demands of multi-scale analysis. First, a Parallel Efficient Mixed Attention Mechanism (PEMAM) is proposed, designed to enhance adaptability to transformer vibration signals while maintaining a low parameter count. This mechanism improves the feature extraction capability of the Image Fusion Framework based on a Convolutional Neural Network, significantly boosting the signal-to-noise ratio and enhancing resistance to distortion in fused images. Subsequently, multi-scale Markov field images, derived from the time and frequency domain features of vibration signals, are fused and fed into the PEMAM-enhanced recognition module for condition assessment. Experimental results indicate that the proposed method achieves 99.63 % accuracy in identifying transformer winding conditions while maintaining low model complexity and computational cost.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.