Stability of non-diagonal Einstein metrics on homogeneous spaces H × H/ΔK

IF 0.7 4区 数学 Q3 MATHEMATICS
Valeria Gutiérrez
{"title":"Stability of non-diagonal Einstein metrics on homogeneous spaces H × H/ΔK","authors":"Valeria Gutiérrez","doi":"10.1016/j.difgeo.2025.102295","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the homogeneous space <span><math><mi>M</mi><mo>=</mo><mi>H</mi><mo>×</mo><mi>H</mi><mo>/</mo><mi>Δ</mi><mi>K</mi></math></span>, where <span><math><mi>H</mi><mo>/</mo><mi>K</mi></math></span> is an irreducible symmetric space and Δ<em>K</em> denotes diagonal embedding. Recently, Lauret and Will provided a complete classification of <span><math><mi>H</mi><mo>×</mo><mi>H</mi></math></span>-invariant Einstein metrics on M. They obtained that there is always at least one non-diagonal Einstein metric on <em>M</em>, and in some cases, diagonal Einstein metrics also exist. We give a formula for the scalar curvature of a subset of <span><math><mi>H</mi><mo>×</mo><mi>H</mi></math></span>-invariant metrics and study the stability of non-diagonal Einstein metrics on <em>M</em> with respect to the Hilbert action, obtaining that these metrics are unstable with different coindices for all homogeneous spaces <em>M</em>.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"101 ","pages":"Article 102295"},"PeriodicalIF":0.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224525000701","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the homogeneous space M=H×H/ΔK, where H/K is an irreducible symmetric space and ΔK denotes diagonal embedding. Recently, Lauret and Will provided a complete classification of H×H-invariant Einstein metrics on M. They obtained that there is always at least one non-diagonal Einstein metric on M, and in some cases, diagonal Einstein metrics also exist. We give a formula for the scalar curvature of a subset of H×H-invariant metrics and study the stability of non-diagonal Einstein metrics on M with respect to the Hilbert action, obtaining that these metrics are unstable with different coindices for all homogeneous spaces M.
齐次空间H × H/ΔK上非对角爱因斯坦度量的稳定性
考虑齐次空间M=H×H/ΔK,其中H/K为不可约对称空间,ΔK为对角嵌入。最近,Lauret和Will给出了M上H×H-invariant爱因斯坦度量的完整分类,他们得到了M上总是存在至少一个非对角爱因斯坦度量,并且在某些情况下,对角爱因斯坦度量也存在。给出了H×H-invariant度量子集的标量曲率公式,并研究了M上非对角爱因斯坦度量关于Hilbert作用的稳定性,得到了这些度量对于所有齐次空间M具有不同的协指标是不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信