Integrating radiomics and real-world data to predict immune checkpoint inhibitor efficacy in advanced non-small-cell lung cancer☆

L. Provenzano , M. Favali , L. Mazzeo , A. Spagnoletti , M. Ruggirello , G. Calareso , F.G. Greco , R. Vigorito , A. Quarta , F. Calimeri , M. Monteleone , G. Baselli , E. De Momi , B. Guirges , A. Di Lello , A. Zec , A. Ferrarin , C. Giani , C. Silvestri , M. Occhipinti , A. Prelaj
{"title":"Integrating radiomics and real-world data to predict immune checkpoint inhibitor efficacy in advanced non-small-cell lung cancer☆","authors":"L. Provenzano ,&nbsp;M. Favali ,&nbsp;L. Mazzeo ,&nbsp;A. Spagnoletti ,&nbsp;M. Ruggirello ,&nbsp;G. Calareso ,&nbsp;F.G. Greco ,&nbsp;R. Vigorito ,&nbsp;A. Quarta ,&nbsp;F. Calimeri ,&nbsp;M. Monteleone ,&nbsp;G. Baselli ,&nbsp;E. De Momi ,&nbsp;B. Guirges ,&nbsp;A. Di Lello ,&nbsp;A. Zec ,&nbsp;A. Ferrarin ,&nbsp;C. Giani ,&nbsp;C. Silvestri ,&nbsp;M. Occhipinti ,&nbsp;A. Prelaj","doi":"10.1016/j.esmorw.2025.100182","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Immunotherapy (IO) revolutionized the prognosis of patients with non-small-cell lung cancer (NSCLC). However, identifying optimal candidates for this treatment remains challenging. Based on previous studies suggesting the potential power of radiomics in predicting clinical outcomes in different clinical settings, we aimed to assess its capability in predicting IO efficacy in advanced NSCLC patients.</div></div><div><h3>Materials and methods</h3><div>A total of 375 advanced NSCLC patients treated with IO-based regimens from April 2013 to May 2022 were enrolled. Primary lung lesions were segmented and radiomic features extracted. Using clinical benefit rate and overall survival status at 6 and 24 months (OS6 and OS24) as endpoints, machine learning classifiers were trained and then evaluated on a test set.</div></div><div><h3>Results</h3><div>Model achieving the highest performance predicting long-term survival (OS24) reached an accuracy of 0.71 and area under the curve of 0.79 on the test set, using the combination of radiomic features and real-world data (RWD) as input. Combining radiomics with RWD consistently allowed to outperform predictions obtained using the current standard predictive biomarker, i.e. programmed death-ligand 1 expression, for most of the outcomes.</div></div><div><h3>Conclusions</h3><div>We explored a radiomics-based signature with potential utility in predicting the prognosis of NSCLC patients undergoing IO. Further validation is required to confirm its clinical applicability and to support oncologists in making prognostic assessments.</div></div>","PeriodicalId":100491,"journal":{"name":"ESMO Real World Data and Digital Oncology","volume":"10 ","pages":"Article 100182"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESMO Real World Data and Digital Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949820125000712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Immunotherapy (IO) revolutionized the prognosis of patients with non-small-cell lung cancer (NSCLC). However, identifying optimal candidates for this treatment remains challenging. Based on previous studies suggesting the potential power of radiomics in predicting clinical outcomes in different clinical settings, we aimed to assess its capability in predicting IO efficacy in advanced NSCLC patients.

Materials and methods

A total of 375 advanced NSCLC patients treated with IO-based regimens from April 2013 to May 2022 were enrolled. Primary lung lesions were segmented and radiomic features extracted. Using clinical benefit rate and overall survival status at 6 and 24 months (OS6 and OS24) as endpoints, machine learning classifiers were trained and then evaluated on a test set.

Results

Model achieving the highest performance predicting long-term survival (OS24) reached an accuracy of 0.71 and area under the curve of 0.79 on the test set, using the combination of radiomic features and real-world data (RWD) as input. Combining radiomics with RWD consistently allowed to outperform predictions obtained using the current standard predictive biomarker, i.e. programmed death-ligand 1 expression, for most of the outcomes.

Conclusions

We explored a radiomics-based signature with potential utility in predicting the prognosis of NSCLC patients undergoing IO. Further validation is required to confirm its clinical applicability and to support oncologists in making prognostic assessments.
结合放射组学和现实世界数据预测免疫检查点抑制剂在晚期非小细胞肺癌中的疗效
免疫治疗(IO)彻底改变了非小细胞肺癌(NSCLC)患者的预后。然而,确定这种治疗的最佳候选者仍然具有挑战性。基于先前的研究表明放射组学在不同临床环境下预测临床结果的潜在力量,我们旨在评估其预测晚期NSCLC患者IO疗效的能力。材料和方法2013年4月至2022年5月,共纳入375例接受基于io的方案治疗的晚期NSCLC患者。对原发性肺病变进行分割,提取放射学特征。以临床获益率和6个月和24个月的总生存状态(OS6和OS24)为终点,对机器学习分类器进行训练,然后在测试集上进行评估。结果使用放射学特征和真实世界数据(RWD)相结合作为输入,在测试集上获得了预测长期生存(OS24)的最高性能模型,准确率为0.71,曲线下面积为0.79。将放射组学与RWD相结合,在大多数结果中始终能够优于使用当前标准预测生物标志物(即程序性死亡配体1表达)获得的预测。结论:我们探索了一种基于放射组学的特征,该特征在预测非小细胞肺癌患者接受IO治疗的预后方面具有潜在的实用性。需要进一步验证以确认其临床适用性,并支持肿瘤学家进行预后评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信