{"title":"Comparison of gap-based and flow-based control strategies using a new controlled stochastic cellular automaton model for traffic flow","authors":"Kayo Kinjo , Akiyasu Tomoeda","doi":"10.1080/19427867.2024.2417150","DOIUrl":null,"url":null,"abstract":"<div><div>Autonomous vehicles are essential to future transportation systems, potentially reducing traffic congestion. This study examines the impact of different vehicle control strategies on traffic flow through simulations. We propose a novel stochastic cellular automaton model, the controlled stochastic optimal velocity (CSOV) model, which incorporates vehicle control effects. Within the CSOV model, two control strategies are implemented: gap-based control (GC), which adjusts vehicle velocity to balance the gaps between adjacent vehicles, and flow-based control (FC), which aims to maintain a consistent local flow between the front and rear vehicles. Results show that both control strategies improve traffic flow. However, under weaker control, the GC sometimes resulted in lower flow compared to no control. In contrast, the FC consistently enhanced flow across control strengths, yielding more robust outcomes. Furthermore, when both strategies achieved comparable flow rates, the FC provided a more stable velocity distribution under varying traffic densities than the GC.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"17 7","pages":"Pages 1171-1181"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786724000894","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous vehicles are essential to future transportation systems, potentially reducing traffic congestion. This study examines the impact of different vehicle control strategies on traffic flow through simulations. We propose a novel stochastic cellular automaton model, the controlled stochastic optimal velocity (CSOV) model, which incorporates vehicle control effects. Within the CSOV model, two control strategies are implemented: gap-based control (GC), which adjusts vehicle velocity to balance the gaps between adjacent vehicles, and flow-based control (FC), which aims to maintain a consistent local flow between the front and rear vehicles. Results show that both control strategies improve traffic flow. However, under weaker control, the GC sometimes resulted in lower flow compared to no control. In contrast, the FC consistently enhanced flow across control strengths, yielding more robust outcomes. Furthermore, when both strategies achieved comparable flow rates, the FC provided a more stable velocity distribution under varying traffic densities than the GC.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.