Changfeng Zhu , Jinxiu Jia , Jie Wang , Jinhao Fang , Linna Cheng
{"title":"Effective passenger flow congestion propagation model for multi-mode rail transit networks","authors":"Changfeng Zhu , Jinxiu Jia , Jie Wang , Jinhao Fang , Linna Cheng","doi":"10.1080/19427867.2024.2418215","DOIUrl":null,"url":null,"abstract":"<div><div>During peak passenger flow periods, congestion propagation directly affects the operational safety and efficiency of multi-mode rail transit interconnections. By analyzing the key factors affecting congestion propagation, such as the train stop schedule, and considering parameters such as the basic reproduction number and propagation threshold, this study proposes a multi-mode rail transit susceptible-infected-recovered-susceptible (MRT-SIRS) epidemic model to analyze passenger flow congestion propagation. Simulation experiments and sensitivity analyses using data from the multi-mode rail transit in Beijing, China, were conducted to examine the influence mechanism of key factors on congestion propagation. The degree of influence of each factor was investigated using Gray correlation analysis. Each key factor, including the propagation and recovery rates, influences congestion propagation differently. The results of this study may provide theoretical support for the efficient operation and management of multi-mode rail transit systems.</div></div>","PeriodicalId":48974,"journal":{"name":"Transportation Letters-The International Journal of Transportation Research","volume":"17 7","pages":"Pages 1182-1198"},"PeriodicalIF":3.3000,"publicationDate":"2025-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Letters-The International Journal of Transportation Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1942786724000869","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0
Abstract
During peak passenger flow periods, congestion propagation directly affects the operational safety and efficiency of multi-mode rail transit interconnections. By analyzing the key factors affecting congestion propagation, such as the train stop schedule, and considering parameters such as the basic reproduction number and propagation threshold, this study proposes a multi-mode rail transit susceptible-infected-recovered-susceptible (MRT-SIRS) epidemic model to analyze passenger flow congestion propagation. Simulation experiments and sensitivity analyses using data from the multi-mode rail transit in Beijing, China, were conducted to examine the influence mechanism of key factors on congestion propagation. The degree of influence of each factor was investigated using Gray correlation analysis. Each key factor, including the propagation and recovery rates, influences congestion propagation differently. The results of this study may provide theoretical support for the efficient operation and management of multi-mode rail transit systems.
期刊介绍:
Transportation Letters: The International Journal of Transportation Research is a quarterly journal that publishes high-quality peer-reviewed and mini-review papers as well as technical notes and book reviews on the state-of-the-art in transportation research.
The focus of Transportation Letters is on analytical and empirical findings, methodological papers, and theoretical and conceptual insights across all areas of research. Review resource papers that merge descriptions of the state-of-the-art with innovative and new methodological, theoretical, and conceptual insights spanning all areas of transportation research are invited and of particular interest.