Lowest sinterable temperature Ag nanoporous sheet bonding at 145–175 °C on Ag-plated Cu and interfacial microstructural degradation under 250 °C aging: Correlation with strength and fracture energy

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
YehRi Kim , Seungjun Noh , Byeong Kwon Ju , Dongjin Kim
{"title":"Lowest sinterable temperature Ag nanoporous sheet bonding at 145–175 °C on Ag-plated Cu and interfacial microstructural degradation under 250 °C aging: Correlation with strength and fracture energy","authors":"YehRi Kim ,&nbsp;Seungjun Noh ,&nbsp;Byeong Kwon Ju ,&nbsp;Dongjin Kim","doi":"10.1016/j.jmrt.2025.09.085","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the microstructural evolution and mechanical reliability of silver (Ag) nano-porous sintered joints bonded at low temperatures (145–175 °C) onto Ag-plated copper (Cu) substrates. We focus on their interfacial degradation behavior during thermal aging at 250 °C. Despite the exceptionally low bonding temperature, strong initial bonding was achieved, and thermal exposure for up to 250 h enhanced sinter neck growth and interfacial connectivity, resulting in increased shear strength and fracture energy absorption. However, extended aging beyond 500 h led to the formation of interfacial Cu<sub>x</sub>O layers and Kirkendall voids at the Cu/Cu<sub>x</sub>O interface, causing bond line thickness transition with delamination and a critical decline in mechanical performance. Microstructural and crystallographic analyses using SEM, EBSD, and XRD revealed stagnation of grain coarsening, texture development, and recrystallization behavior in both the sintered Ag and Ag plating layers. The failure mode transitioned from cohesive fracture within the Ag layer to interfacial separation at the oxidized Cu interface. These findings demonstrate that low-temperature Ag nanoporous sheet bonding can initially deliver robust interfacial strength, but long-term reliability at elevated temperatures is limited by diffusion-driven oxidation and void formation at the Cu interface.</div></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"39 ","pages":"Pages 154-178"},"PeriodicalIF":6.6000,"publicationDate":"2025-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785425023397","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the microstructural evolution and mechanical reliability of silver (Ag) nano-porous sintered joints bonded at low temperatures (145–175 °C) onto Ag-plated copper (Cu) substrates. We focus on their interfacial degradation behavior during thermal aging at 250 °C. Despite the exceptionally low bonding temperature, strong initial bonding was achieved, and thermal exposure for up to 250 h enhanced sinter neck growth and interfacial connectivity, resulting in increased shear strength and fracture energy absorption. However, extended aging beyond 500 h led to the formation of interfacial CuxO layers and Kirkendall voids at the Cu/CuxO interface, causing bond line thickness transition with delamination and a critical decline in mechanical performance. Microstructural and crystallographic analyses using SEM, EBSD, and XRD revealed stagnation of grain coarsening, texture development, and recrystallization behavior in both the sintered Ag and Ag plating layers. The failure mode transitioned from cohesive fracture within the Ag layer to interfacial separation at the oxidized Cu interface. These findings demonstrate that low-temperature Ag nanoporous sheet bonding can initially deliver robust interfacial strength, but long-term reliability at elevated temperatures is limited by diffusion-driven oxidation and void formation at the Cu interface.
145 ~ 175℃下银纳米孔片在镀银Cu上的最低烧结温度及250℃时效下界面微观结构的退化:与强度和断裂能的相关性
本研究研究了低温(145-175℃)焊在镀银铜(Cu)衬底上的银(Ag)纳米多孔烧结接头的显微组织演变和力学可靠性。研究了其在250℃热老化过程中的界面退化行为。尽管结合温度极低,但仍实现了较强的初始结合,并且长达250 h的热暴露增强了烧结颈生长和界面连连性,从而提高了剪切强度和断裂能吸收。然而,超过500 h的时效会导致Cu/CuxO界面形成CuxO层和Kirkendall空洞,导致键线厚度随分层转变,力学性能临界下降。利用SEM、EBSD和XRD对烧结银层和镀银层进行了显微组织和晶体分析,结果表明,烧结银层和镀银层的晶粒粗化、织构发育和再结晶行为停滞不前。破坏模式由银层内的内聚断裂转变为氧化Cu界面处的界面分离。这些发现表明,低温银纳米孔片键合最初可以提供强大的界面强度,但在高温下的长期可靠性受到Cu界面上扩散驱动的氧化和空洞形成的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信