Tailoring bimeron-antibimeron in Permalloy submicron dot via field–induced magnetization reversal

Praveen Palabindela , Priyanka Babu , Mani Bharathi M. , Ajith Nix E.S.R. , Kiruthiga Devi B. , Jaivardhan Sinha , Bhaskar Chandra Behera
{"title":"Tailoring bimeron-antibimeron in Permalloy submicron dot via field–induced magnetization reversal","authors":"Praveen Palabindela ,&nbsp;Priyanka Babu ,&nbsp;Mani Bharathi M. ,&nbsp;Ajith Nix E.S.R. ,&nbsp;Kiruthiga Devi B. ,&nbsp;Jaivardhan Sinha ,&nbsp;Bhaskar Chandra Behera","doi":"10.1016/j.rsurfi.2025.100641","DOIUrl":null,"url":null,"abstract":"<div><div>The controlled nucleation and manipulation of topological spin textures such as bimerons and antibimerons, remain significant challenges for advancing spintronic technologies. We investigate the tunable controllability and selective manipulation of bimeron and antibimeron pairs in two thicknesses (t = 2 and 4 nm) of Py sub-micron dot systems using magnetization reversal investigation in micromagnetic simulations. By systematically varying material parameters such as the Dzyaloshinskii–Moriya interaction (DMI) constant, dot thickness, and applying external bias fields, we demonstrate control over the nucleation, stability, and annihilation of bimeron-antibimeron pairs. Our results reveal that the size of the bimeron–antibimeron pair approximately reduces from 23 to 19 nm when the thickness of the dot is increased from 2 to 4 nm. It is also seen that the spatial separation of bimeron pairs is strongly dependent on the dot thickness. Notably, the selective stabilization of either bimerons or antibimerons can be achieved by adjusting the sign and magnitude of the DMI constant (D = ±3.0 mJ/m<sup>2</sup>). Finally, the application of suitable bias fields during magnetization reversal enables additional selectivity in controlling these topological spin textures. These findings provide new insights into the engineering and manipulation of topologically protected bimerons-antibimerons spin textures, highlighting their potential for future spintronic device applications.</div></div>","PeriodicalId":21085,"journal":{"name":"Results in Surfaces and Interfaces","volume":"21 ","pages":"Article 100641"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Surfaces and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666845925002284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The controlled nucleation and manipulation of topological spin textures such as bimerons and antibimerons, remain significant challenges for advancing spintronic technologies. We investigate the tunable controllability and selective manipulation of bimeron and antibimeron pairs in two thicknesses (t = 2 and 4 nm) of Py sub-micron dot systems using magnetization reversal investigation in micromagnetic simulations. By systematically varying material parameters such as the Dzyaloshinskii–Moriya interaction (DMI) constant, dot thickness, and applying external bias fields, we demonstrate control over the nucleation, stability, and annihilation of bimeron-antibimeron pairs. Our results reveal that the size of the bimeron–antibimeron pair approximately reduces from 23 to 19 nm when the thickness of the dot is increased from 2 to 4 nm. It is also seen that the spatial separation of bimeron pairs is strongly dependent on the dot thickness. Notably, the selective stabilization of either bimerons or antibimerons can be achieved by adjusting the sign and magnitude of the DMI constant (D = ±3.0 mJ/m2). Finally, the application of suitable bias fields during magnetization reversal enables additional selectivity in controlling these topological spin textures. These findings provide new insights into the engineering and manipulation of topologically protected bimerons-antibimerons spin textures, highlighting their potential for future spintronic device applications.
场致磁化反转法在坡莫合金亚微米点中裁剪双墨子-反双墨子
拓扑自旋结构(如双色子和反双色子)的可控成核和操纵仍然是推进自旋电子技术的重大挑战。我们利用微磁模拟中的磁化反转研究了两种厚度(t = 2和4 nm)的Py亚微米点系统中双色子和反双色子对的可调可控性和选择性操作。通过系统地改变Dzyaloshinskii-Moriya相互作用(DMI)常数、点厚度和施加外部偏置场等材料参数,我们证明了对双色子-反双色子对的成核、稳定性和湮灭的控制。结果表明,当点厚度从2 nm增加到4 nm时,双色子-反双色子对的尺寸从23 nm减小到19 nm。我们还可以看到,双色子对的空间分离与网点厚度密切相关。值得注意的是,通过调整DMI常数的符号和大小(D =±3.0 mJ/m2),可以实现双色子或反双色子的选择性稳定。最后,在磁化反转过程中应用合适的偏置场可以在控制这些拓扑自旋织构方面具有额外的选择性。这些发现为拓扑保护双色子-反双色子自旋织构的工程和操作提供了新的见解,突出了它们在未来自旋电子器件应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信