LiMS-Net: Lightweight metal surface defect detection network

IF 3.4 2区 工程技术 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Yang Zhu , Yong-Cheng Lin
{"title":"LiMS-Net: Lightweight metal surface defect detection network","authors":"Yang Zhu ,&nbsp;Yong-Cheng Lin","doi":"10.1016/j.displa.2025.103227","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to enhance the accuracy of detecting defects on metal surfaces by proposing a lightweight metal surface defect detection network (LiMS-Net). The backbone of LiMS-Net incorporates a residual synchronous convolutional block feature extraction module that utilizes multi-scale convolution kernels. Features are concurrently processed using these multi-scale convolution kernels. In the neck stage, a Conv-MLP module that extracts global image features. This module is further enhanced by shift operations that improve information interaction among different regions of the features. To further enhance feature interaction across different scales and improve detection accuracy, a cross-scale feature fusion block is proposed. This approach alleviates feature loss issues caused by extensive feature processing. This study employed the advanced object detection methods and conducted comparative experiments using publicly available defect databases. Compared to the advanced object detection methods, LiMS-Net demonstrated superior performance across all databases while utilizing fewer parameters.</div></div>","PeriodicalId":50570,"journal":{"name":"Displays","volume":"91 ","pages":"Article 103227"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Displays","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141938225002641","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to enhance the accuracy of detecting defects on metal surfaces by proposing a lightweight metal surface defect detection network (LiMS-Net). The backbone of LiMS-Net incorporates a residual synchronous convolutional block feature extraction module that utilizes multi-scale convolution kernels. Features are concurrently processed using these multi-scale convolution kernels. In the neck stage, a Conv-MLP module that extracts global image features. This module is further enhanced by shift operations that improve information interaction among different regions of the features. To further enhance feature interaction across different scales and improve detection accuracy, a cross-scale feature fusion block is proposed. This approach alleviates feature loss issues caused by extensive feature processing. This study employed the advanced object detection methods and conducted comparative experiments using publicly available defect databases. Compared to the advanced object detection methods, LiMS-Net demonstrated superior performance across all databases while utilizing fewer parameters.
LiMS-Net:轻质金属表面缺陷检测网络
为了提高金属表面缺陷检测的准确性,本研究提出了一种轻量化金属表面缺陷检测网络(LiMS-Net)。LiMS-Net的主干采用了一个利用多尺度卷积核的残差同步卷积块特征提取模块。利用这些多尺度卷积核对特征进行并发处理。在颈部阶段,一个卷积- mlp模块提取全局图像特征。该模块通过移位操作进一步增强,移位操作改善了特征不同区域之间的信息交互。为了进一步增强不同尺度特征的交互作用,提高检测精度,提出了一种跨尺度特征融合块。这种方法减轻了大量特征处理带来的特征丢失问题。本研究采用先进的目标检测方法,并使用公开可用的缺陷数据库进行对比实验。与先进的目标检测方法相比,lms - net在使用更少参数的情况下,在所有数据库中都表现出卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Displays
Displays 工程技术-工程:电子与电气
CiteScore
4.60
自引率
25.60%
发文量
138
审稿时长
92 days
期刊介绍: Displays is the international journal covering the research and development of display technology, its effective presentation and perception of information, and applications and systems including display-human interface. Technical papers on practical developments in Displays technology provide an effective channel to promote greater understanding and cross-fertilization across the diverse disciplines of the Displays community. Original research papers solving ergonomics issues at the display-human interface advance effective presentation of information. Tutorial papers covering fundamentals intended for display technologies and human factor engineers new to the field will also occasionally featured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信