{"title":"Rho kinase 2 promotes epithelial-mesenchymal transition and proliferation in human prostate cancer PC-3 cells","authors":"Alamgir Hossain , Aya Yamamura , Md Junayed Nayeem , Sivasundaram Karnan , Rie Takahashi , Hisaki Hayashi , Motohiko Sato","doi":"10.1016/j.jphs.2025.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>Prostate cancer is the second most common cancer in men. Although androgen deprivation therapy is initially effective, resistance inevitably develops. Most patients eventually progress to castration-resistant prostate cancer, a stage with limited treatment options and poor prognosis. Rho kinases (ROCK1 and ROCK2) have been implicated in cancer progression, but their therapeutic targeting remains limited. This study examined the pathological roles of ROCK1 and ROCK2 in epithelial-mesenchymal transition (EMT) and proliferation of prostate cancer cells. ROCK1 expression was comparable between human prostate epithelial cells (PrECs) and androgen-independent prostate cancer cells, PC-3 and DU145. In contrast, ROCK2 expression was higher in PC-3 cells than in PrECs and DU145 cells. EMT marker analysis revealed that PC-3 cells exhibited decreased E-cadherin and increased N-cadherin and Snail expression. ROCK2 knockdown reversed this EMT phenotype, reducing cell proliferation, migration, 3D tumor spheroid formation, and spheroid cell viability. Similar inhibitory effects were observed by the ROCK2-selective blocker KD025 (IC<sub>50</sub> = 422 nM). Furthermore, ROCK2 deficiency attenuated the tumor growth of PC-3 cells in a xenograft mouse model. These findings indicate that ROCK2 promotes EMT process and tumor progression in PC-3 cells. Targeting ROCK2 may represent a promising therapeutic strategy for androgen-independent prostate cancer.</div></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"159 4","pages":"Pages 229-241"},"PeriodicalIF":2.9000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861325000933","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Prostate cancer is the second most common cancer in men. Although androgen deprivation therapy is initially effective, resistance inevitably develops. Most patients eventually progress to castration-resistant prostate cancer, a stage with limited treatment options and poor prognosis. Rho kinases (ROCK1 and ROCK2) have been implicated in cancer progression, but their therapeutic targeting remains limited. This study examined the pathological roles of ROCK1 and ROCK2 in epithelial-mesenchymal transition (EMT) and proliferation of prostate cancer cells. ROCK1 expression was comparable between human prostate epithelial cells (PrECs) and androgen-independent prostate cancer cells, PC-3 and DU145. In contrast, ROCK2 expression was higher in PC-3 cells than in PrECs and DU145 cells. EMT marker analysis revealed that PC-3 cells exhibited decreased E-cadherin and increased N-cadherin and Snail expression. ROCK2 knockdown reversed this EMT phenotype, reducing cell proliferation, migration, 3D tumor spheroid formation, and spheroid cell viability. Similar inhibitory effects were observed by the ROCK2-selective blocker KD025 (IC50 = 422 nM). Furthermore, ROCK2 deficiency attenuated the tumor growth of PC-3 cells in a xenograft mouse model. These findings indicate that ROCK2 promotes EMT process and tumor progression in PC-3 cells. Targeting ROCK2 may represent a promising therapeutic strategy for androgen-independent prostate cancer.
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.