A tamed Euler scheme for SDEs with non-locally integrable drift coefficient

IF 1.2 2区 数学 Q3 STATISTICS & PROBABILITY
Tim Johnston , Sotirios Sabanis
{"title":"A tamed Euler scheme for SDEs with non-locally integrable drift coefficient","authors":"Tim Johnston ,&nbsp;Sotirios Sabanis","doi":"10.1016/j.spa.2025.104772","DOIUrl":null,"url":null,"abstract":"<div><div>In this article we show that for SDEs with a drift coefficient that is non-locally integrable, one may define a tamed Euler scheme that converges in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span> at rate <span><math><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></math></span> to the true solution. The taming is required in this case since one cannot expect the regular Euler scheme to have finite moments in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>. Our proof strategy involves controlling the inverse moments of the distance of scheme and the true solution to the singularity set. We additionally show that our setting applies to the case of two scalar valued particles with singular interaction kernel. To the best of the authors’ knowledge, this is the first work to prove strong convergence of an Euler-type scheme in the case of non-locally integrable drift.</div></div>","PeriodicalId":51160,"journal":{"name":"Stochastic Processes and their Applications","volume":"191 ","pages":"Article 104772"},"PeriodicalIF":1.2000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Processes and their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304414925002169","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this article we show that for SDEs with a drift coefficient that is non-locally integrable, one may define a tamed Euler scheme that converges in Lp at rate 1/2 to the true solution. The taming is required in this case since one cannot expect the regular Euler scheme to have finite moments in Lp. Our proof strategy involves controlling the inverse moments of the distance of scheme and the true solution to the singularity set. We additionally show that our setting applies to the case of two scalar valued particles with singular interaction kernel. To the best of the authors’ knowledge, this is the first work to prove strong convergence of an Euler-type scheme in the case of non-locally integrable drift.
漂移系数非局部可积的SDEs的驯服欧拉格式
在本文中,我们证明了对于具有非局部可积漂移系数的SDEs,可以定义一个在Lp中以1/2的速率收敛到真解的驯化欧拉格式。在这种情况下,由于不能期望正则欧拉格式在Lp中具有有限矩,因此需要进行驯服。我们的证明策略包括控制方案距离的逆矩和奇异集的真解。此外,我们还证明了我们的设置适用于具有奇异相互作用核的两个标量值粒子的情况。据作者所知,这是第一个证明欧拉型格式在非局部可积漂移情况下的强收敛性的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Stochastic Processes and their Applications
Stochastic Processes and their Applications 数学-统计学与概率论
CiteScore
2.90
自引率
7.10%
发文量
180
审稿时长
23.6 weeks
期刊介绍: Stochastic Processes and their Applications publishes papers on the theory and applications of stochastic processes. It is concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical, scientific and engineering interests. Characterization, structural properties, inference and control of stochastic processes are covered. The journal is exacting and scholarly in its standards. Every effort is made to promote innovation, vitality, and communication between disciplines. All papers are refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信