Machine-learning based Li-Ion Cell state prediction using Impedance spectroscopy

IF 4.9
Carl Philipp Klemm , Till Frömling
{"title":"Machine-learning based Li-Ion Cell state prediction using Impedance spectroscopy","authors":"Carl Philipp Klemm ,&nbsp;Till Frömling","doi":"10.1016/j.mlwa.2025.100729","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and reliable monitoring of battery state parameters is crucial for ensuring optimal battery performance, safety, and lifetime. Existing methods have limitations, such as requiring modeling of each degradation mechanism involved or relying on direct measurement techniques that impose restrictions on field studies or end-user use. In this paper, we propose a machine learning-based approach that combines the strengths of electrochemical impedance spectroscopy (EIS) and machine learning algorithms to predict battery state parameters. We have developed an efficient prediction system that can learn from EIS data and accurately predict battery state parameters. Our approach is trained on an open dataset comprising of over 30,000 spectra, generated using an automated measurement technique that outperforms current machine learning-based models, particularly in terms of generalization across different cells and measurement setups.</div></div>","PeriodicalId":74093,"journal":{"name":"Machine learning with applications","volume":"22 ","pages":"Article 100729"},"PeriodicalIF":4.9000,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine learning with applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666827025001124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and reliable monitoring of battery state parameters is crucial for ensuring optimal battery performance, safety, and lifetime. Existing methods have limitations, such as requiring modeling of each degradation mechanism involved or relying on direct measurement techniques that impose restrictions on field studies or end-user use. In this paper, we propose a machine learning-based approach that combines the strengths of electrochemical impedance spectroscopy (EIS) and machine learning algorithms to predict battery state parameters. We have developed an efficient prediction system that can learn from EIS data and accurately predict battery state parameters. Our approach is trained on an open dataset comprising of over 30,000 spectra, generated using an automated measurement technique that outperforms current machine learning-based models, particularly in terms of generalization across different cells and measurement setups.

Abstract Image

基于机器学习的锂离子电池状态预测使用阻抗谱
准确、可靠地监测电池状态参数对于确保最佳的电池性能、安全性和寿命至关重要。现有的方法有局限性,例如需要对所涉及的每一种降解机制进行建模,或者依赖于对实地研究或最终用户使用施加限制的直接测量技术。在本文中,我们提出了一种基于机器学习的方法,该方法结合了电化学阻抗谱(EIS)和机器学习算法的优势来预测电池状态参数。我们开发了一个高效的预测系统,可以从EIS数据中学习并准确预测电池状态参数。我们的方法是在一个包含超过30,000个光谱的开放数据集上进行训练的,该数据集使用自动测量技术生成,优于当前基于机器学习的模型,特别是在不同细胞和测量设置的泛化方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machine learning with applications
Machine learning with applications Management Science and Operations Research, Artificial Intelligence, Computer Science Applications
自引率
0.00%
发文量
0
审稿时长
98 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信