M.H. Rady , Areej A. Al-Khalaf , M.S. Salama , Islam Abou El-Magd , M. Emam , Shaimaa A.A. Moʼmen , Shaimaa M. Farag , M.S. Yones , Abdelwahab Khalil
{"title":"Climate impact on spatial patterns of Aedes aegypti abundance in Al-Quseer with distribution maps","authors":"M.H. Rady , Areej A. Al-Khalaf , M.S. Salama , Islam Abou El-Magd , M. Emam , Shaimaa A.A. Moʼmen , Shaimaa M. Farag , M.S. Yones , Abdelwahab Khalil","doi":"10.1016/j.ejrs.2025.09.002","DOIUrl":null,"url":null,"abstract":"<div><div>The invasion of new mosquito disease vectors can alter the abundance of resident mosquito populations, leading to new vector distribution patterns and associated disease risks. A notable example is the re-invasion of the Red Sea region by <em>Aedes aegypti</em> since 2017, facilitated by the area’s hot and humid conditions. <em>In this study, Ae. aegypti</em> larvae were collected from indoors and outdoors habitats and entomological indices were calculated. To assess the influence of climate on spatial distribution, we utilized Landsat-8 satellite-derived maps of Al Quseer (Red Sea Governorate, Egypt), incorporating key climatic and environmental abiotic factors to develop a cartographic model. This model classified areas into different risk levels for <em>Aedes</em> breeding and prevalence. Our results indicate that the primary climatic and environmental factors affecting <em>Ae. aegypti</em> distribution and abundance were temperature, moisture, and vegetation cover—the latter of which indirectly influences microclimates by providing shade and maintaining humidity, thereby affecting mosquito resting sites and survival. The study identified three major risk levels based on breeding suitability: high-risk areas (0.15 km2), moderate-risk areas (0.47 km2), and limited-risk areas (7.24 km2). Of the total study area (4,659 km2), mosquito activity was detected across 655.62 km2, while 4,003.78 km2 remained unaffected. Urban areas within high-risk zones covered 9.11 km2, whereas only 0.25 km2 of urban districts in Al Quseer fell outside the mosquito’s range. Understanding the ecological drivers of <em>Ae. aegypti</em> abundance and predicting its future distribution provides critical insights into vector biology and potential expansion, offering valuable guidance for integrated dengue control strategies.</div></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"28 4","pages":"Pages 607-618"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982325000523","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The invasion of new mosquito disease vectors can alter the abundance of resident mosquito populations, leading to new vector distribution patterns and associated disease risks. A notable example is the re-invasion of the Red Sea region by Aedes aegypti since 2017, facilitated by the area’s hot and humid conditions. In this study, Ae. aegypti larvae were collected from indoors and outdoors habitats and entomological indices were calculated. To assess the influence of climate on spatial distribution, we utilized Landsat-8 satellite-derived maps of Al Quseer (Red Sea Governorate, Egypt), incorporating key climatic and environmental abiotic factors to develop a cartographic model. This model classified areas into different risk levels for Aedes breeding and prevalence. Our results indicate that the primary climatic and environmental factors affecting Ae. aegypti distribution and abundance were temperature, moisture, and vegetation cover—the latter of which indirectly influences microclimates by providing shade and maintaining humidity, thereby affecting mosquito resting sites and survival. The study identified three major risk levels based on breeding suitability: high-risk areas (0.15 km2), moderate-risk areas (0.47 km2), and limited-risk areas (7.24 km2). Of the total study area (4,659 km2), mosquito activity was detected across 655.62 km2, while 4,003.78 km2 remained unaffected. Urban areas within high-risk zones covered 9.11 km2, whereas only 0.25 km2 of urban districts in Al Quseer fell outside the mosquito’s range. Understanding the ecological drivers of Ae. aegypti abundance and predicting its future distribution provides critical insights into vector biology and potential expansion, offering valuable guidance for integrated dengue control strategies.
期刊介绍:
The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.