{"title":"UAV-based agricultural spraying: A study on spiral movements and pesticide optimization","authors":"Mevlüt İnan , Ali Karci","doi":"10.1016/j.ejrs.2025.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>Unmanned aerial vehicles (UAVs) have become an essential component of precision agriculture, providing enhanced accuracy and operational efficiency in pesticide application. This study presents an innovative spraying protocol that integrates spiral flight trajectories with volumetric classification of olive trees, enhancing operational performance while reducing environmental impact. Using high-resolution UAV imagery in conjunction with advanced image processing, trees were categorized into small, medium, and large canopy-volume classes. For each group, optimized spiral patterns with predefined turn counts and flight altitudes were assigned to achieve uniform droplet deposition across complex canopy structures. Field experiments conducted in the Hekimhan district of Malatya, Türkiye, demonstrated an 85 % improvement in spraying efficiency, a 15 % reduction in chemical usage, and a 20 % decrease in operational time compared with conventional methods. The proposed approach significantly improved targeting precision and minimized off-target drift. These results clearly indicate that the proposed protocol is scalable, environmentally sustainable, and operationally efficient for pesticide application in orchards and other tree-based agricultural systems.This approach demonstrates considerable potential for widespread adoption in precision agriculture, offering a replicable and adaptable framework for enhancing the efficiency and sustainability of pesticide application in diverse orchard systems.</div></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"28 4","pages":"Pages 619-627"},"PeriodicalIF":4.1000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982325000511","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned aerial vehicles (UAVs) have become an essential component of precision agriculture, providing enhanced accuracy and operational efficiency in pesticide application. This study presents an innovative spraying protocol that integrates spiral flight trajectories with volumetric classification of olive trees, enhancing operational performance while reducing environmental impact. Using high-resolution UAV imagery in conjunction with advanced image processing, trees were categorized into small, medium, and large canopy-volume classes. For each group, optimized spiral patterns with predefined turn counts and flight altitudes were assigned to achieve uniform droplet deposition across complex canopy structures. Field experiments conducted in the Hekimhan district of Malatya, Türkiye, demonstrated an 85 % improvement in spraying efficiency, a 15 % reduction in chemical usage, and a 20 % decrease in operational time compared with conventional methods. The proposed approach significantly improved targeting precision and minimized off-target drift. These results clearly indicate that the proposed protocol is scalable, environmentally sustainable, and operationally efficient for pesticide application in orchards and other tree-based agricultural systems.This approach demonstrates considerable potential for widespread adoption in precision agriculture, offering a replicable and adaptable framework for enhancing the efficiency and sustainability of pesticide application in diverse orchard systems.
期刊介绍:
The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.