A non-Archimedean theory of complex spaces and the cscK problem

IF 1.5 1区 数学 Q1 MATHEMATICS
Pietro Mesquita-Piccione
{"title":"A non-Archimedean theory of complex spaces and the cscK problem","authors":"Pietro Mesquita-Piccione","doi":"10.1016/j.aim.2025.110543","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we develop an analogue of the Berkovich analytification for non-necessarily algebraic complex spaces. We apply this theory to generalize to arbitrary compact Kähler manifolds a result of Chi Li, <span><span>[42]</span></span>, proving that a stronger version of K-stability implies the existence of a unique constant scalar curvature Kähler metric.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110543"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004414","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we develop an analogue of the Berkovich analytification for non-necessarily algebraic complex spaces. We apply this theory to generalize to arbitrary compact Kähler manifolds a result of Chi Li, [42], proving that a stronger version of K-stability implies the existence of a unique constant scalar curvature Kähler metric.
复空间的非阿基米德理论与cscK问题
在本文中,我们发展了一个非必然代数复空间的Berkovich分析的类比。我们将Chi Li,[42]的结果推广到任意紧形Kähler流形,证明了k -稳定性的一个更强的版本暗示了唯一常数标量曲率Kähler度规的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信