Intermediate subalgebras of Cartan embeddings in rings and C*-algebras

IF 1.5 1区 数学 Q1 MATHEMATICS
Jonathan H. Brown , Lisa Orloff Clark , Adam H. Fuller
{"title":"Intermediate subalgebras of Cartan embeddings in rings and C*-algebras","authors":"Jonathan H. Brown ,&nbsp;Lisa Orloff Clark ,&nbsp;Adam H. Fuller","doi":"10.1016/j.aim.2025.110534","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>D</mi><mo>⊆</mo><mi>A</mi></math></span> be a quasi-Cartan pair of algebras. Then there exists a unique discrete groupoid twist <span><math><mi>Σ</mi><mo>→</mo><mi>G</mi></math></span> whose twisted Steinberg algebra is isomorphic to <em>A</em> in a way that preserves <em>D</em>. In this paper, we show there is a lattice isomorphism between wide open subgroupoids of <em>G</em> and subalgebras <em>C</em> such that <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi><mo>⊆</mo><mi>A</mi></math></span> and <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi></math></span> is a quasi-Cartan pair. We also characterize which algebraic diagonal/algebraic Cartan/quasi-Cartan pairs have the property that every subalgebra <em>C</em> with <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi><mo>⊆</mo><mi>A</mi></math></span> has <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi></math></span> a diagonal/Cartan/quasi-Cartan pair. In the diagonal case, when the coefficient ring is a field, it is all of them. Beyond that, only pairs that are close to being diagonal have this property. We then apply our techniques to C*-algebraic inclusions and give a complete characterization of which Cartan pairs <span><math><mi>D</mi><mo>⊆</mo><mi>A</mi></math></span> have the property that every C*-subalgebra <em>C</em> with <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi><mo>⊆</mo><mi>A</mi></math></span> has <span><math><mi>D</mi><mo>⊆</mo><mi>C</mi></math></span> a Cartan pair.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110534"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004323","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let DA be a quasi-Cartan pair of algebras. Then there exists a unique discrete groupoid twist ΣG whose twisted Steinberg algebra is isomorphic to A in a way that preserves D. In this paper, we show there is a lattice isomorphism between wide open subgroupoids of G and subalgebras C such that DCA and DC is a quasi-Cartan pair. We also characterize which algebraic diagonal/algebraic Cartan/quasi-Cartan pairs have the property that every subalgebra C with DCA has DC a diagonal/Cartan/quasi-Cartan pair. In the diagonal case, when the coefficient ring is a field, it is all of them. Beyond that, only pairs that are close to being diagonal have this property. We then apply our techniques to C*-algebraic inclusions and give a complete characterization of which Cartan pairs DA have the property that every C*-subalgebra C with DCA has DC a Cartan pair.
环上Cartan嵌入的中间子代数与C*-代数
设D≥A为拟cartan代数对。则存在一个唯一的离散群拟扭转Σ→G,其扭曲Steinberg代数与a同构,且保持D。本文证明了G的广开子群拟与子代数C之间存在格同构,使得D、D、C是拟cartan对。我们还刻画了哪些代数对角/代数Cartan/拟Cartan对具有下述性质:每一个子代数C都有D、D、C一个对角/Cartan/拟Cartan对。在对角线的情况下,当系数环是一个场时,它是它们的全部。除此之外,只有接近对角线的对才有这个性质。然后,我们运用我们的技术C *代数夹杂物,给一个完整的描述的嘉当双D⊆属性,每一个C *子代数C与D⊆C⊆D⊆C嘉当一对。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信