A sharp localized weighted inequality related to Gagliardo and Sobolev seminorms and its applications

IF 1.5 1区 数学 Q1 MATHEMATICS
Pingxu Hu, Yinqin Li, Dachun Yang, Wen Yuan
{"title":"A sharp localized weighted inequality related to Gagliardo and Sobolev seminorms and its applications","authors":"Pingxu Hu,&nbsp;Yinqin Li,&nbsp;Dachun Yang,&nbsp;Wen Yuan","doi":"10.1016/j.aim.2025.110537","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we establish a nearly sharp localized weighted inequality related to Gagliardo and Sobolev seminorms, respectively, with the sharp <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-weight constant or with the specific <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>p</mi></mrow></msub></math></span>-weight constant when <span><math><mi>p</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mo>∞</mo><mo>)</mo></math></span>. As applications, we further obtain a new characterization of Muckenhoupt weights and, in the framework of ball Banach function spaces, an inequality related to Gagliardo and Sobolev seminorms on cubes, a Gagliardo–Nirenberg interpolation inequality, and a Bourgain–Brezis–Mironescu formula. All these obtained results have wide generality and are proved to be (nearly) sharp.</div></div>","PeriodicalId":50860,"journal":{"name":"Advances in Mathematics","volume":"481 ","pages":"Article 110537"},"PeriodicalIF":1.5000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001870825004359","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we establish a nearly sharp localized weighted inequality related to Gagliardo and Sobolev seminorms, respectively, with the sharp A1-weight constant or with the specific Ap-weight constant when p(1,). As applications, we further obtain a new characterization of Muckenhoupt weights and, in the framework of ball Banach function spaces, an inequality related to Gagliardo and Sobolev seminorms on cubes, a Gagliardo–Nirenberg interpolation inequality, and a Bourgain–Brezis–Mironescu formula. All these obtained results have wide generality and are proved to be (nearly) sharp.
关于Gagliardo和Sobolev半精的尖锐局域加权不等式及其应用
在本文中,我们分别建立了一个与Gagliardo半精和Sobolev半精相关的近似尖锐局域加权不等式,当p∈(1,∞)时,它具有尖锐a1 -权常数或特定ap -权常数。作为应用,我们进一步得到了Muckenhoupt权的一个新的表征,并在球Banach函数空间的框架下,得到了一个与立方体上的Gagliardo和Sobolev半形有关的不等式、一个Gagliardo - nirenberg插值不等式和一个Bourgain-Brezis-Mironescu公式。所有这些结果都具有广泛的普遍性,并被证明是(近乎)尖锐的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Mathematics
Advances in Mathematics 数学-数学
CiteScore
2.80
自引率
5.90%
发文量
497
审稿时长
7.5 months
期刊介绍: Emphasizing contributions that represent significant advances in all areas of pure mathematics, Advances in Mathematics provides research mathematicians with an effective medium for communicating important recent developments in their areas of specialization to colleagues and to scientists in related disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信