{"title":"The role of environmental pressures on stromatolite morphology: Insights from the Ediacaran Salitre Formation, Irecê Basin, Brazil","authors":"Jhon Willy Lopes Afonso , Carolina Bedoya-Rueda , Sergio Caetano-Filho , Cristian Guacaneme , Guilherme Raffaelli , Mariane Candido , Kamilla Borges Amorim , Gustavo Macedo Paula-Santos , Marly Babinski , Ricardo Ivan Ferreira Trindade","doi":"10.1016/j.precamres.2025.107924","DOIUrl":null,"url":null,"abstract":"<div><div>Stromatolites are laminated biosedimentary structures that record long-standing interaction between environmental conditions and coevolving microbial life. Although they are among the oldest and most persistent forms of life on Earth, the extent to which environmental parameters affect their morphology and distribution remains poorly understood. In this study, we investigated the well-exposed stromatolites of the Ediacaran Salitre Formation (Irecê Basin, Brazil) to assess how physical sedimentary processes and early lithification dynamics controlled stromatolite growth and form. Through integrated sedimentological and petrographic analyses, we documented a stratigraphic transition from stratiform to columnar morphologies, which closely correlates with variations in hydrodynamic energy, sediment influx, and local relief. Our results demonstrate that increased hydrodynamic energy and detrital input promoted the development of columnar, often inclined or branched forms, whereas low-energy conditions allowed for the development of stratiform structures, especially within protected scour depressions. The occurrence of inclined, yet unbroken stromatolite columns and their alignment with the paleoflow indicators suggest growth under dynamic, high-energy conditions with weak or incomplete synsedimentary lithification. Despite the high-energy setting, grains are concentrated only within the intercolumnar spaces and are almost absent from the stromatolite laminae, suggesting that lamination resulted primarily from microbial carbonate precipitation rather than sediment trapping. Additionally, the internal lamination patterns and detrital material distribution reflect episodic sedimentation and microbial mat disruption, further emphasizing the sensitivity of stromatolite morphology to environmental changes. Our findings highlight that the stromatolites in the Salitre Formation provide a valuable snapshot of the intricate interplay between physical parameters and biological activity during the terminal Neoproterozoic.</div></div>","PeriodicalId":49674,"journal":{"name":"Precambrian Research","volume":"430 ","pages":"Article 107924"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precambrian Research","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301926825002505","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Stromatolites are laminated biosedimentary structures that record long-standing interaction between environmental conditions and coevolving microbial life. Although they are among the oldest and most persistent forms of life on Earth, the extent to which environmental parameters affect their morphology and distribution remains poorly understood. In this study, we investigated the well-exposed stromatolites of the Ediacaran Salitre Formation (Irecê Basin, Brazil) to assess how physical sedimentary processes and early lithification dynamics controlled stromatolite growth and form. Through integrated sedimentological and petrographic analyses, we documented a stratigraphic transition from stratiform to columnar morphologies, which closely correlates with variations in hydrodynamic energy, sediment influx, and local relief. Our results demonstrate that increased hydrodynamic energy and detrital input promoted the development of columnar, often inclined or branched forms, whereas low-energy conditions allowed for the development of stratiform structures, especially within protected scour depressions. The occurrence of inclined, yet unbroken stromatolite columns and their alignment with the paleoflow indicators suggest growth under dynamic, high-energy conditions with weak or incomplete synsedimentary lithification. Despite the high-energy setting, grains are concentrated only within the intercolumnar spaces and are almost absent from the stromatolite laminae, suggesting that lamination resulted primarily from microbial carbonate precipitation rather than sediment trapping. Additionally, the internal lamination patterns and detrital material distribution reflect episodic sedimentation and microbial mat disruption, further emphasizing the sensitivity of stromatolite morphology to environmental changes. Our findings highlight that the stromatolites in the Salitre Formation provide a valuable snapshot of the intricate interplay between physical parameters and biological activity during the terminal Neoproterozoic.
期刊介绍:
Precambrian Research publishes studies on all aspects of the early stages of the composition, structure and evolution of the Earth and its planetary neighbours. With a focus on process-oriented and comparative studies, it covers, but is not restricted to, subjects such as:
(1) Chemical, biological, biochemical and cosmochemical evolution; the origin of life; the evolution of the oceans and atmosphere; the early fossil record; palaeobiology;
(2) Geochronology and isotope and elemental geochemistry;
(3) Precambrian mineral deposits;
(4) Geophysical aspects of the early Earth and Precambrian terrains;
(5) Nature, formation and evolution of the Precambrian lithosphere and mantle including magmatic, depositional, metamorphic and tectonic processes.
In addition, the editors particularly welcome integrated process-oriented studies that involve a combination of the above fields and comparative studies that demonstrate the effect of Precambrian evolution on Phanerozoic earth system processes.
Regional and localised studies of Precambrian phenomena are considered appropriate only when the detail and quality allow illustration of a wider process, or when significant gaps in basic knowledge of a particular area can be filled.