Double missing multi-view multi-label classification via an attention-guided multi-space consistency alignment framework

IF 6.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Bingyan Nie , Wulin Xie, Lian Zhao, Jiang Long, Xiaohuan Lu, Yinghao Ye
{"title":"Double missing multi-view multi-label classification via an attention-guided multi-space consistency alignment framework","authors":"Bingyan Nie ,&nbsp;Wulin Xie,&nbsp;Lian Zhao,&nbsp;Jiang Long,&nbsp;Xiaohuan Lu,&nbsp;Yinghao Ye","doi":"10.1016/j.neucom.2025.131558","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-view multi-label classification (MVMLC) seeks to enhance classification by integrating diverse data views, but its practical use is hindered by missing views and labels, posing the significant challenge of incomplete MVMLC(IMVMLC). Although various IMVMLC approaches have been proposed, most of them handle multiple objectives in a single feature space and thus overlook the conflict between learning consistent common semantics and reconstructing view-specific information. In addition, existing multi-view classification methods mainly consider utilizing the features of each view, while ignoring the inconsistent contributions of each view and usually relying on static average weighting strategies. To this end, we propose our Attention-Guided MultiSpace Consistency Alignment Framework (AMCA). In Stage 1, AMCA introduces multi-space representation learning with dual-level contrastive objectives, explicitly disentangling shared and view-specific semantics to resolve the objective conflict and yield more informative embeddings. In Stage 2, AMCA employs an attention-guided fusion module that dynamically evaluates and integrates multi-view features based on their relevance to the classification task, enabling robust decision-making even with missing data. Extensive experiments validate the effectiveness and superiority of our proposal.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"656 ","pages":"Article 131558"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225022301","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Multi-view multi-label classification (MVMLC) seeks to enhance classification by integrating diverse data views, but its practical use is hindered by missing views and labels, posing the significant challenge of incomplete MVMLC(IMVMLC). Although various IMVMLC approaches have been proposed, most of them handle multiple objectives in a single feature space and thus overlook the conflict between learning consistent common semantics and reconstructing view-specific information. In addition, existing multi-view classification methods mainly consider utilizing the features of each view, while ignoring the inconsistent contributions of each view and usually relying on static average weighting strategies. To this end, we propose our Attention-Guided MultiSpace Consistency Alignment Framework (AMCA). In Stage 1, AMCA introduces multi-space representation learning with dual-level contrastive objectives, explicitly disentangling shared and view-specific semantics to resolve the objective conflict and yield more informative embeddings. In Stage 2, AMCA employs an attention-guided fusion module that dynamically evaluates and integrates multi-view features based on their relevance to the classification task, enabling robust decision-making even with missing data. Extensive experiments validate the effectiveness and superiority of our proposal.
基于注意引导的多空间一致性对齐框架的双缺失多视图多标签分类
多视图多标签分类(MVMLC)旨在通过集成不同的数据视图来增强分类能力,但其实际应用受到缺少视图和标签的阻碍,这对不完整的MVMLC(IMVMLC)提出了重大挑战。尽管已经提出了各种各样的IMVMLC方法,但大多数方法都是在单个特征空间中处理多个目标,从而忽略了学习一致的公共语义和重建特定于视图的信息之间的冲突。此外,现有的多视图分类方法主要考虑利用每个视图的特征,而忽略了每个视图的贡献不一致,通常依赖于静态平均加权策略。为此,我们提出了注意力引导的多空间一致性校准框架(AMCA)。在第一阶段,AMCA引入了具有双层对比目标的多空间表示学习,明确地解开了共享和特定于视图的语义,以解决目标冲突并产生更多信息的嵌入。在第二阶段,AMCA采用了一个注意力引导的融合模块,该模块根据与分类任务的相关性动态评估和集成多视图特征,即使在数据缺失的情况下也能实现稳健的决策。大量的实验验证了该方案的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信