Physics-based analytical modeling of materials properties in metal additive manufacturing

IF 6.8 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Wei Huang , Ruoqi Gao , Hamid Garmestani , Steven Y. Liang
{"title":"Physics-based analytical modeling of materials properties in metal additive manufacturing","authors":"Wei Huang ,&nbsp;Ruoqi Gao ,&nbsp;Hamid Garmestani ,&nbsp;Steven Y. Liang","doi":"10.1016/j.jmapro.2025.09.019","DOIUrl":null,"url":null,"abstract":"<div><div>Emerging additive manufacturing (AM) offers a sustainable alternative to the subtractive processes with significant potential for complex geometries and material efficiency. However, predicting and controlling the microstructure-dependent properties of AM parts, particularly metals, remains challenging due to complex multi-physical processes. This work develops a physics-based analytical modeling framework to predict the evolution of key microstructural features (texture and grain size) and their influence on material properties (elastic modulus, Poisson’s ratio, yield strength) in laser powder bed fusion (LPBF) of Ti-6Al-4V. The framework integrates: (1) a 3D thermal profile model with boundary heat transfer for a moving point heat source; (2) Johnson–Mehl–Avrami–Kolmogorov (JMAK) kinetics and Green’s function-based thermal stress analysis for grain size prediction during heating and cooling; (3) columnar-to-equiaxed transition (CET) criteria and Bunge calculation for multi-phase texture evolution; (4) a self-consistent model to predict texture-affected anisotropic elastic modulus and Poisson’s ratio; and (5) the Hall–Petch relation for grain size-dependent yield strength. Experimental validations confirm the fidelity of the thermal model (molten pool dimensions), texture simulation (pole figure intensities), and predicted properties. Crucially, the simulated effective elastic modulus (109–117 GPa) and yield strength (850–900 MPa) under consistent processing parameters align well with experimental ranges (100–140 GPa and 850–1050 MPa, respectively) and show stability regardless of layer or row settings. The Poisson’s ratio exhibits significant anisotropy (approx. 0.45–0.5 in X/Y vs. lower values in other directions). By bridging processing parameters, microstructure evolution, and final properties, this work provides a paradigm for computationally efficient prediction and optimization of AM material performance, paving the way for inverse design strategies.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"153 ","pages":"Pages 680-692"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612525009946","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

Emerging additive manufacturing (AM) offers a sustainable alternative to the subtractive processes with significant potential for complex geometries and material efficiency. However, predicting and controlling the microstructure-dependent properties of AM parts, particularly metals, remains challenging due to complex multi-physical processes. This work develops a physics-based analytical modeling framework to predict the evolution of key microstructural features (texture and grain size) and their influence on material properties (elastic modulus, Poisson’s ratio, yield strength) in laser powder bed fusion (LPBF) of Ti-6Al-4V. The framework integrates: (1) a 3D thermal profile model with boundary heat transfer for a moving point heat source; (2) Johnson–Mehl–Avrami–Kolmogorov (JMAK) kinetics and Green’s function-based thermal stress analysis for grain size prediction during heating and cooling; (3) columnar-to-equiaxed transition (CET) criteria and Bunge calculation for multi-phase texture evolution; (4) a self-consistent model to predict texture-affected anisotropic elastic modulus and Poisson’s ratio; and (5) the Hall–Petch relation for grain size-dependent yield strength. Experimental validations confirm the fidelity of the thermal model (molten pool dimensions), texture simulation (pole figure intensities), and predicted properties. Crucially, the simulated effective elastic modulus (109–117 GPa) and yield strength (850–900 MPa) under consistent processing parameters align well with experimental ranges (100–140 GPa and 850–1050 MPa, respectively) and show stability regardless of layer or row settings. The Poisson’s ratio exhibits significant anisotropy (approx. 0.45–0.5 in X/Y vs. lower values in other directions). By bridging processing parameters, microstructure evolution, and final properties, this work provides a paradigm for computationally efficient prediction and optimization of AM material performance, paving the way for inverse design strategies.
金属增材制造中基于物理的材料特性分析建模
新兴的增材制造(AM)为减法工艺提供了一种可持续的替代方案,具有复杂几何形状和材料效率的巨大潜力。然而,由于复杂的多物理过程,预测和控制增材制造零件(特别是金属)的微观结构依赖特性仍然具有挑战性。本研究开发了一个基于物理的分析建模框架,用于预测Ti-6Al-4V激光粉末床熔合(LPBF)过程中关键微观结构特征(织构和晶粒尺寸)的演变及其对材料性能(弹性模量、泊松比、屈服强度)的影响。该框架集成了:(1)移动点热源的带边界传热的三维热廓线模型;(2)基于Johnson-Mehl-Avrami-Kolmogorov (JMAK)动力学和Green’s函数的热应力分析在加热和冷却过程中预测晶粒尺寸;(3)多相织构演化的柱向等轴转变(CET)准则和Bunge计算;(4)自洽模型预测纹理影响的各向异性弹性模量和泊松比;(5)随晶粒尺寸变化的屈服强度的Hall-Petch关系。实验验证证实了热模型(熔池尺寸)、纹理模拟(极图强度)和预测性能的保真度。重要的是,在相同的工艺参数下,模拟的有效弹性模量(109-117 GPa)和屈服强度(850-900 MPa)与实验范围(分别为100-140 GPa和850-1050 MPa)保持一致,并且无论层或排设置如何,都表现出稳定性。泊松比表现出显著的各向异性(约为。X/Y值为0.45-0.5,其他方向值较低)。通过连接加工参数、微观结构演变和最终性能,这项工作为增材制造材料性能的计算高效预测和优化提供了一个范例,为逆向设计策略铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Manufacturing Processes
Journal of Manufacturing Processes ENGINEERING, MANUFACTURING-
CiteScore
10.20
自引率
11.30%
发文量
833
审稿时长
50 days
期刊介绍: The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信