{"title":"Reducing real-time complexity via sub-control Lyapunov functions: From theory to experiments","authors":"Huu-Thinh Do , Franco Blanchini , Stefano Miani , Ionela Prodan","doi":"10.1016/j.automatica.2025.112592","DOIUrl":null,"url":null,"abstract":"<div><div>The techniques to design control Lyapunov functions (CLF), along with a proper stabilizing feedback, possibly in the presence of constraints, often provide control laws that are too complex for proper implementation online, especially when an optimization problem is involved. In this work, we show how to acquire an alternative, computationally attractive feedback. Given a nominal CLF and a nominal state feedback, we say that a different positive definite function is a Sub-control Lyapunov function (SCLF) if its Lyapunov derivative is negative-definite and bounded above by the Lyapunov derivative of the nominal function with the nominal control. It turns out that if we consider a family of basis functions, then an SCLF can be computed by linear programming, with an infinite number of constraints. The idea is that although the offline computational burden to achieve the new controller and solve the linear program is considerable, the online computational burden is drastically reduced. Comprehensive simulations and experiments on drone control are conducted to demonstrate the effectiveness of the study.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"183 ","pages":"Article 112592"},"PeriodicalIF":5.9000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000510982500487X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The techniques to design control Lyapunov functions (CLF), along with a proper stabilizing feedback, possibly in the presence of constraints, often provide control laws that are too complex for proper implementation online, especially when an optimization problem is involved. In this work, we show how to acquire an alternative, computationally attractive feedback. Given a nominal CLF and a nominal state feedback, we say that a different positive definite function is a Sub-control Lyapunov function (SCLF) if its Lyapunov derivative is negative-definite and bounded above by the Lyapunov derivative of the nominal function with the nominal control. It turns out that if we consider a family of basis functions, then an SCLF can be computed by linear programming, with an infinite number of constraints. The idea is that although the offline computational burden to achieve the new controller and solve the linear program is considerable, the online computational burden is drastically reduced. Comprehensive simulations and experiments on drone control are conducted to demonstrate the effectiveness of the study.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.